
1

Hastings, John Douglas, Design and Implementation of a
Speech Recognition Database Query
System, M.S., Department of
Computer Science, August 1991.

This thesis introduces CONQUEST, a constrained natural

language speech recognition database query system. The

objective was to improve on previous natural language

database query systems by designing and implementing a more

user-friendly query system through the integration of speech

and nondeterministic syntactic processing. This paper will

discuss the areas in which improvements were attempted, the

components required along with a discussion of each, an

illustration of system operation, and an evaluation of the

final product.

DESIGN AND IMPLEMENTATION OF A SPEECH
RECOGNITION DATABASE QUERY SYSTEM

by
John Douglas Hastings

A thesis
submitted to the

Department of Computer Science and
The Graduate School of The University

of Wyoming in Partial Fulfillment of Requirements
for the Degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Laramie, Wyoming
August, 1991

ii

ACKNOWLEDGEMENTS

I wish to express my deepest appreciation for the

additional time and effort that Dr. S. R. Petrick offered in

helping me to complete this thesis.

iii

TABLE OF CONTENTS

CHAPTER PAGE

 I. INTRODUCTION

1.1 Natural Language Query Systems 1
1.2 A Constrained Natural Language Query
 System Proposal 5

 II. COMPONENTS AND STRUCTURES

2.1 Speech Systems 7
2.2 Grammar Formalism 9
2.3 Parsing Algorithm 11
2.4 Translation to Logical Form 14
2.5 Logical Form to SQL Translation 17
2.6 Logical Form Notation Used 18

III. TECHNICAL DISCUSSION OF SYSTEM COMPONENTS

3.1 Speech System 20
3.2 Context-Free Grammars 23
3.3 Tomita's Parsing Algorithm 24
3.4 Knuth's Attribute Grammar

 Translation Algorithm 30
3.5 Logical Form to SQL Conversion
 Procedure 33

 IV. ILLUSTRATION OF SYSTEM OPERATION

4.1 Database Structure Used 35
4.2 System Initialization 35
4.3 Parsing Process 37
4.4 Translation Process 38
4.5 Logical Form to SQL Conversion
 Process 38
4.6 Other Examples 39

 V. CONCLUSION 40

 LIST OF REFERENCES 45

iv

 APPENDICES

A. Attribute Grammar Rules and Tables

Original Attribute Grammar Rules . . . 49
Context-Free Grammar Rules 51
LR Parsing Action Table 52
LR Parsing Goto Table 53
List of Preterminals 54
Terminal Lookup Table 55
Converted Attribute Grammar Rules . . . 56

B. Trace of System Operation 60

C. Program Listings

Parsing Procedures 72
LR Parsing Table Construction
 Procedures 82
Utility Procedures 85
Conversion Functions 87
Translation Procedures 89
Initialization Procedures for
 Translation 92
Knuth Translation Procedures 96
Logical Form to Pre-SQL
 Translation Procedures 102
Pre-SQL to SQL Translation
 Procedures 113

v

LIST OF TABLES

Page

Table 1. Parsing Steps for the Sentence 0 1 $ 29

vi

LIST OF FIGURES

Page

Figure 1. CONQUEST Architecture 6

Figure 2. Parse Tree 23

Figure 3. Parse Tree 30

1

CHAPTER I

INTRODUCTION

1.1 NATURAL LANGUAGE QUERY SYSTEMS

Computational linguistics has probably been most

successfully applied to providing natural language front

ends to database systems, relational database systems in

particular. There are several reasons that might be

suggested for this. First and foremost is the relatively

small size of the natural language subsets that are required

for query in a very narrowly limited database domain. These

small natural language subsets allow queries which are

limited syntactically without removing the ways by which a

wide variety of requests for structured information can be

stated. It is also often the case that system users can be

advised in such a way that they are allowed to observe and

avoid the syntactic and semantic limitations of a system,

while still being able to communicate effectively. This

situation with respect to the required coverage of English

for database retrieval contrasts markedly with that for

translation of one natural language to another. With rare

2

exceptions (such as the French METEO System for translating

weather reports) people do not write reports, articles,

books, manuals, etc. with the specific intent of their being

able to be translated to another language. Consequently,

even such mundane literature as equipment instruction

manuals have been found to contain the entire range of

syntactic and semantic complexity.

A large number of natural language database system

front ends have been implemented in the past decade with

individual query success rates of 70% to 80% being quite

common [1, 2, 3, 4]. This might seem like a rather modest

accomplishment, but the corresponding success rates for

users of even the latest and best formal query languages are

apparently much lower [5]. In addition, there are many

users and potential users of natural language query systems

that are either unwilling or unable to use formal languages.

The movement of query system research and development has

progressed in recent years from the experimental research

laboratory to the corporate development facility (in the

past five years), with most of the current research being

conducted in the area of customizing the lexical, syntactic,

and semantic demands of a system to accommodate a specific

database application.

Useful as these recent database systems are, they

nevertheless have some shortcomings. Herschmann et al [6]

3

reported that their users were not disturbed by the length

of time required to answer successful queries, but they were

bothered when a similar length of time was required to

signal unprocessable queries. These and most other natural

language query system users have also complained about the

lack of helpful advice when a query cannot be answered; all

too many systems just give a message such as "Unable to

process your query. Please rephrase and try again" without

identifying the likely reason for its failure. This is

particularly frustrating if the user has input a long

sentence and waited a long time for a response, only to be

told that the sentence wasn't understood with no hint of why

not or how to rephrase. If 30% of a user's queries cannot

be processed correctly he or she expects some assistance in

reformulating those queries to get the desired information

from the system.

One approach to eliminating queries that lie outside of

a system's capabilities is to allow the user to input only

"legal" queries that the system can process. Ross and

Tennant first proposed and implemented such a system at

Texas Instruments [7, 8]. They used a context-free grammar

to form the basis for their internal translation from

English to SQL (a database query language), and constrained

the user to entering only words, chosen from among the set

of possible words, that constituted a syntactically valid

4

continuation of the words previously input to the system.

At each stage of the input and processing, a list of all the

words that produced a syntactically well-formed continuation

was displayed on a computer monitor menu, and the user was

required to choose among them via scrolling, mouse pointing

and clicking. Their claim was that their system gives its

users sufficient flexibility to ask for any desired

information, while at the same time guiding and constraining

them to input only syntactically well-formed input queries.

This approach has been adopted by at least two other

groups since its proposal [personal communication]. It has

a serious drawback, however. This has to do with the time

requirements and inconvenience of successive word selection

via menus, even if a mouse is used. Particularly when there

are a lot of possible choices, it is tiresome and time-

consuming to scroll through a long list of words, hunting

(perhaps vainly) for the word one wants to use next in

formulating an intended query. Even if the user has

generated the same query at some earlier point and knows the

exact words which are possible, he must still search for

them (or at the least move to them) on the menu screen.

This onerous nature of using large menus is compounded

by a property common to all natural language-based database

systems. They are not provably complete in the sense of

guaranteeing that every query which is expressible in first

5

order logic has a natural language query equivalent that is

accepted by the system. For systems making use of the Texas

Instruments approach this means that there may be no

sequence of menu selections that constitutes a query that

expresses a user's intention to retrieve certain data. This

causes user frustration in a laborious but futile search for

a menu system path that asks for the desired information.

The next section contains an outline of our proposal for

alleviating these drawbacks while retaining the advantages

of the TI grammar-constrained approach.

1.2 A CONSTRAINED NATURAL LANGUAGE QUERY SYSTEM PROPOSAL

The proposed system is called CONQUEST for Constrained

Natural Language Query System and attempts in two main ways

to alleviate the shortcomings of the TI approach. First,

input spoken word recognition is incorporated to allow users

to enter their queries by speaking, which is perhaps faster

and easier than searching for the words on a menu screen and

possibly more user friendly than communicating through the

use of a keyboard or mouse. Second, a nondeterministic

parsing approach is used to parse each word as it is entered

according to a grammar and in the context of the previously

entered words. This allows CONQUEST to detect the exact

point of non well-formedness in a natural language database

6

Figure 1. CONQUEST Architecture

query and to flag the error (optionally with a speech output

system if the user so desires) so that the user can see

precisely where in the query an error occurs and what the

nature of the problem is. In addition, instead of

cluttering the screen up with unnecessary and sometimes

confusing information (such as menus), CONQUEST displays

nothing on the screen unless an error is made or the user

executes a special command. After a grammatical query is

successfully input to the system it is converted to the SQL

database query language, suitable for retrieval of data in

any database system which provides interpretation of that

language. Figure 1 shows the overall architecture of

CONQUEST. The choice of specific components is discussed in

the next chapter.

7

CHAPTER II

COMPONENTS AND STRUCTURES

2.1 SPEECH SYSTEMS

After determining the general approach that would be

taken, a choice of specific components was made, beginning

with input spoken word recognition and text-to-speech

generation facilities. These choices were made on the basis

of availability rather than functionality. Specifically, a

COVOX Voice Master Key Version 2.00 System [9] was already

installed on a laboratory 33 MHz IBM compatible PC, and it

had been successfully interfaced to work with the Goldworks

I Developer LISP System [10] that was also installed on that

machine. The COVOX System is designed to perform isolated

word recognition and to initiate the equivalent of a

sequence of keystrokes (i.e., a macro) upon recognition of a

word for which it has previously been trained. Another

COVOX-supplied hardware-software system, the Speech Thing

and the SmoothTalker software (designed and written by First

8

Byte, Inc.) [11], is used for text-to-speech generation, and

was also chosen for reasons of availability.

These COVOX speech I/O software/hardware packages were

available because their performance to cost ratio is

exceptionally high. The combined cost of software and

hardware for both speech recognition and generation was just

$225. In spite of this, the Voice Master Key System

provides recognition of isolated spoken words and phrases

from a limited vocabulary with a success rate that can under

favorable circumstances exceed 95%. The system's

performance is less than that of more expensive commercial

alternatives and experimental research systems in two

principal ways: (1) it is less robust in providing a high

individual word recognition success rate for a range of

speakers without separate "training" for each speaker, and

(2) it is quite limited as to the size of the vocabulary

that can be recognized. Several commercially available

systems recognize 1000 word vocabularies [12] and systems

with an active vocabulary of up to 30,000 words exist [13].

The COVOX Voice Master Key System, on the other hand, is

limited to recognizing 256 words, and they must be organized

into groups of no more than 16 words. Only one group can be

active for recognition purposes at a given time, and

switching between groups can be done by voice command or by

typed command. For the purpose of a small demonstration

9

system this restriction can be tolerated. However, if one

were thoroughly evaluating the practical utility of the type

of spoken input query system created in this thesis, a

system capable of recognizing a several hundred word

vocabulary would be required.

The COVOX Speech Thing together with the SmoothTalker

text-to-speech software system provides sufficiently

intelligible English output to be used for feedback to users

in cases of detected ambiguity or ungrammaticality.

2.2 GRAMMAR FORMALISM

A syntactic linguistic formalism (theory) upon which to

base the system was required for two reasons. First, to

provide each query with a linguistic structure that can be

used as an adequate basis for semantic interpretation in the

form of translation to a first order logical form. The

latter systematically represents the meaning of a query.

Second, to provide a filter for detecting the point within a

query at which it becomes syntactically ill-formed and to

provide a means of suggesting well-formed continuations from

earlier points in the query.

These two requirements eliminate certain grammatical

formalisms from consideration. The transformational grammar

was eliminated because of the complexity of its parsers [14,

10

15] and because it is not suitable for determining the point

at which an input string (query) becomes ungrammatical. The

augmented transition network (ATN) [16] is one formalism

that does appear to be suitable. Its transitions to the set

of next states or failures to do so indicate the syntactic

admissibility of the next word.

Another candidate is the context free grammar,

preferably augmented by the addition of complex

syntactic/semantic features as in GPSG (General Phrase

Structure Grammar) [17] or DCL (Definite Clause Grammar

[18]. Such extensions of a context free grammar provide for

the parsimonious expression of various types of syntactic

agreement and a means of semantic interpretation. We have

opted instead for a simple context free grammar (CFG)

syntactic component for several reasons. First, it is

simpler than its augmented CFG counterparts. Second,

although it is not suitable for specifying a sizeable

natural language subset, it nevertheless can be used to

specify a small subset which is large enough to demonstrate

the utility of our proposed query interface. And finally,

its choice permits the use of various available software

implementations of system components. In particular, a CFG

parser, a semantic interpreter (translator), and a logical

form to SQL (Structured Query Language) translator were all

available after necessary modification for our purposes.

11

2.3 PARSING ALGORITHM

Having selected a simple CFG linguistic model,

alternative CFG parsing algorithms were next considered in

order to obtain the associated structural description(s) of

a query with respect to a particular CFG. The first

candidate considered was a left corner parser because: (1)

an implementation supplied by Petrick [19] was available,

(2) Ross [8] has demonstrated that this parsing algorithm

can be modified to determine ill-formedness at the

intermediate points of a query, and (3) various authors [20,

21] have given experimental support for the practical

efficiency of left corner parsers relative to that of chart

parsers even though the latter have better (n as opposed to3

exponential) worst case complexity bounds [22, 23, 24].

However, initial attempts to modify Petrick's left corner

parser to let it accept terminal symbols (words) in a

strictly sequential, word-at-a-time fashion proved harder

than expected. This was due to the organization of the

parser with respect to its handling of non-determinism. Its

depth-first, pushdown stack implementation of following left

corner non-deterministic choice points was not conducive to

determining points within a query at which no continuation

is possible. This problem with handling nondeterminism

12

could also cause difficulties with other parsers that appear

at first inspection to be suitable, ATNs in particular.

Nondeterminism in chart parsers, on the other hand, is

easy to implement in either a depth first manner or in a

manner that processes all continuations consistent with a

particular next word prior to moving on to the next word.

The latter type of implementation is actually more common.

After considering several chart parsers, Tomita's [22, 25]

was selected to be modified for the purposes of this thesis.

Even though its worst case bound is no better than that of

other chart parsers, its implementations offer possibilities

for efficiency that have been empirically validated. In

particular, its treatment of data structures for the sharing

of substructures common to ambiguous parses is particularly

efficient. The principal reason for selecting this parser,

however, is that it seemed to require the least amount of

modification to achieve the type of interaction that was

required. Tomita's original parser, whose coding is given

in his doctoral thesis, begins parsing only after an entire

sentence has been specified. Nevertheless, it is organized

to do all of the parsing associated with the next word in

the input sentence nondeterministically with no lookahead

prior to going on to the next word, so his code required

minimal conversion for our purposes. The primary effort

taken was in translating from the MACLISP dialect in which

13

the procedures were given to the available version of Common

LISP.

Tomita's parser works by building on to a forest of

interconnected (pointer-sharing) trees which are alternately

collapsed and built upon. This allows two very useful

things. First, the user, whenever desired, can back up in

the forest of parse trees. This might be useful, for

example, when the user wishes to retract his previous word.

More generally, it is useful when difficulty is encountered

in producing a query that is both syntactically well-formed

and semantically responsive to the user's desire for

specific information to be retrieved. Consider the

situation where a word is uttered that has no subsequent

continuation to a well-formed query (and is flagged as

erroneous), and none of the alternative possible words

(which are suggested by the system, and which do not fail)

seem to be appropriate for producing a query that reflects

the user's intent. The user must then back up to a prior

point in his query (possibly its beginning) and attempt to

go on from there. To do this it is possible to back the

Tomita parser up to any requested prior point, and to

determine the set of terminal symbols that constitute well-

formed continuations onward from that point. Many other

parsers would be forced to reparse the entire query to

14

earlier points, repeating the same computation over and

over.

Details of the action of the modified Tomita parser are

presented in the next chapter. They explain more clearly

how the parser works in order to satisfy the interactive

requirements of this thesis.

2.4 TRANSLATION TO LOGICAL FORM

Once a syntactically correct (with respect to the

system's grammar) query has been produced and assigned

phrase structure, it is necessary to translate that

structure into some computer-interpretable form. Rather

than translating directly into a formal query language such

as SQL many investigators have found it worthwhile to

produce an intermediate representation of meaning using some

variant of relational calculus [2, 3, 26]. One reason for

this is that it is easier to produce something that is in a

standard logical form before doing the final translation.

In addition, going to this intermediate form requires less

modification of code in the event that the database query

language is changed. A set domain relational calculus

representation devised by Petrick for the IBM Research TQA

System [1] was chosen as our logical form. Adoption of this

particular representation made it possible to use a subset

15

of Petrick's LISP functions for subsequent translation of

logical forms to SQL. An explanation and illustration of

the nature of this logical form appears in a subsequent

section of this chapter. The remainder of this section is

concerned with the translation from surface syntactic

structures to logical form.

The task of translating English structures to computer

interpretable form is similar to that of converting

programming language syntactic structures to an intermediate

or a low level programming language, and some of the same

formal mechanisms have been used for both. The usual

translation mechanism used is a bottom-to-top, single pass

translation procedure devised originally by Irons [27] for

the translation of ALGOL to assembly language. In its

simplest form a single translation rule is associated with

each production of a CFG. Each translation rule defines the

translation of that portion of a parse tree structure

corresponding to its CFG production. The translation of a

nonterminal node expanded by some production is defined to

be some function of the resulting translations of the

production's daughter nodes. Terminal symbols are defined

to be their own translations, and hence the translation of

every node in a syntactic tree can be recursively determined

by applying translation rules corresponding to the

productions embedded in the tree in a bottom-to-top fashion.

16

The translation of the tree's root node is taken as the

translation of the tree.

This procedure is used in the semantic interpretation

of the Montague grammar [28] and GPSG [17] as well as a

number of other natural language systems, and it is the

basis of most computer compilers. A natural extension is to

replace the single translation of each node described above

with multiple translations, each identified as the value of

a set of semantic attributes associated with a node.

A property of a compositional semantic system such as

the one described above is that a given subtree will always

be translated the same way regardless of the larger

structure in which it is embedded. Often however, this is

not desirable. One solution is to tolerate this

restriction, producing translations interlaced with

variables that are substituted for at higher levels when the

necessary information is available. GPSG takes this

approach. Another approach is to allow attribute value

information to be passed both up and down a tree, thus

allowing for the translation of subtrees as a function not

only of their own content but also as a function of the

larger context in which they occur. This is the approach

devised by Knuth for programming language compilation

purposes and subsequently adopted by researchers in natural

language interpretation as well [29].

17

Translation of the syntactic structures assigned to

queries by our simple subset of English did not require the

use of Knuth's inherited (top-down) attributes, only his

bottom-to-top Irons-like synthesized attributes.

Nevertheless, we made use of a full-fledged Knuth Attribute

Grammar translation component for two reasons. A LISP-based

attribute grammar translator was available [30] and its use

gives our system greater possibilities for future extension

to more realistic subsets of English than would have been

the case had an Irons-type translator been used.

2.5 LOGICAL FORM TO SQL TRANSLATION

To complete the task of mapping English queries to a

computer interpretable form, a target database query

language had to be chosen. SQL was an obvious choice due to

its universality, with many database systems providing an

SQL compatibility feature in addition to their main database

query language. Choosing SQL allows CONQUEST to work with a

large number of database systems. Also, considerable work

has supposedly been done on optimizing SQL queries. Probably

the most convincing argument was the existence of LISP

functions (that required only slight modification) written

by Petrick to accomplish the translation from logical form

to SQL in the TQA System. Petrick's functions cover the

18

full range of logical form possibilities, and they are

further complicated by individually handling many separate

cases so as to produce very efficient SQL translations. Our

simple English query subset produced very few of the

different types of logical form query cases treated by

Petrick, and so only a portion of his functions had to be

translated from the IBM LISP dialect in which they were

originally written to equivalent Common LISP functions.

Nevertheless, 73 functions in all had to be converted to our

Common LISP dialect. Those functions are included with the

others of CONQUEST in Appendix C.

2.6 LOGICAL FORM NOTATION USED

It will be recalled that a set domain relational

calculus logical form is used as an intermediate step in the

conversion from the parse tree structure to SQL. The LISP

representation used for this simple type of logical form

expression is illustrated by the following example:

(SETX 'X1
 '(RELATION 'ZP '(PNO PNAME) '(X1 'SCREW) '(= =)))

which denotes the set of all values X1 from the relation 'ZP

(perhaps a database file containing an inventory of parts),

such that there is a tuple whose PNO attribute has the value

X1, and whose PNAME attribute has the value 'SCREW. More

complex logical form expressions are possible, but the

19

simple CFG used by CONQUEST is capable of producing very few

of them. Some further examples of logical forms CONQUEST is

able to translate to SQL are:

(SETX 'X1 '(TOTAL X1
 (SETX 'X2
 '(RELATION 'ZP '(PNO COLOR) '(X2 'RED) '(= =)))))

(SETX 'X1
 '(AND
 (RELATION 'ZP '(PNO COLOR) '(X1 'RED) '(= =))
 (RELATION 'ZSP '(PNO SNO) '(X1 'S2) '(= =))))

Data structures used for the different grammars and

tables appear during the discussion of components in Chapter

3.

20

CHAPTER THREE

TECHNICAL DISCUSSION OF SYSTEM COMPONENTS

3.1 SPEECH SYSTEM

As noted before, CONQUEST allows use of the COVOX Voice

Master Key Version 2.00 speech recognition system to speak

in the words of an English sentence, or the user can type

them in. If the speech recognizer is employed, the system

is first calibrated to adjust for noise surrounding the

microphone. Next, the user specifies which words the system

should be prepared to recognize by training a voice

template. The user then specifies a macro template

indicating the text (sequence of keystrokes) that should be

entered when a spoken word is recognized. In our case the

word to be recognized and the text to be entered are the

same, so the system simply types the characters of the word

followed by a carriage return (the ENTER key). For example

if the user speaks "the", the text "the" should be typed in.

Once the templates have been created and saved, they no

longer have to be respecified.

21

Speech recognition can now begin. The user wanting a

word to be recognized just hits the "hot key" (the SHIFT key

in our configuration) and speaks a word. If all goes as

planned, the word is recognized and the system enters the

proper keystrokes.

The COVOX system does have some limitations. First,

the templates in the system must be grouped in small sets of

16 words. This limits the number of words which can be

recognized without switching via voiced or typed command to

a different set of templates. Altogether, there can be 16

such different sets of 16 word templates. This is

sufficient for our demonstration purposes when the words for

each distinct sentence can be included in a separate

template set, but it would not be suitable for practical

applications.

A second problem is the recognition of numbers. It is

impossible to set up the speech system to recognize all

possible spoken numbers as there are an infinite number.

One alternative would be to set up the voice and macro

templates with individual digits. However, that would

further restrict an already small speech vocabulary.

Probably the best option is to type in the numbers

separately. If the user is involved in a database

application which relies heavily on numbers, the advantages

of speech input are lost. It should be noted that

22

significant successes in the recognition of continuous

speech constrained to numeric information have begun to take

place [31].

Another problem is voice recognition itself. The COVOX

system is usually very speaker specific. To achieve good

recognition for more than one user, separate voice templates

must be used. Even in the case of a single user, day to day

variances in a person's voice and articulation sometimes

cause recognition to fail for certain words. Existing but

more expensive systems make stronger claims to speaker

independence, but the performance of any system is enhanced

if its parameters are optimized for a single speaker.

One last problem was the use of the memory resident

COVOX speech recognition programs with the desired LISP

interpreter. To handle an attribute grammar (stored in list

form) that was both large enough and complex enough to show

a variety of natural language queries, a Lisp interpreter of

sufficient power such as GOLDWORKS II was required.

However, GOLDWORKS II is not compatible with the COVOX

programs, so GOLDWORKS I had to be used. As it works out,

GOLDWORKS I can not manage very large lists, so this

severely limited the attribute grammar size.

In addition to speech input, CONQUEST allows spoken

output with the COVOX Speech Thing. This output device is

designed to pronounce arbitrary ASCII text, and can speak

23

Figure 2. Parse Tree

most phrases including numbers (except those including

symbols) reasonably well. The Speech Thing will speak a

phrase by calling the Common Lisp interface procedure speak

and passing it the phrase as a string parameter.

3.2 CONTEXT-FREE GRAMMARS

Context-free grammar productions (or rules) are of the

type:

G: S -> S B
 S -> B
 B -> 0
 B -> 1

where G is the set of productions, S

and B are nonterminal symbols (or

variables), S is the distinguished

start symbol, and 0 and 1 are terminal

symbols. These productions generate a

language, made up of all the possible

terminal symbol sentences derived by

the productions from the distinguished

nonterminal start symbol. In this

case, the productions in G with respect to the start symbol

S generate the language containing all binary numbers. For

example, the sentence 011 belongs to the language generated

by G by the following derivation: S -> SB -> SBB -> BBB ->

24

BB1 -> B11 -> 011. The tree structure thus assigned to 011

is shown in Figure 2.

3.3 TOMITA'S PARSING ALGORITHM

A modified form of Tomita's parsing algorithm is used

to interactively determine the legality of input terminals

in the context of a sentence. This algorithm uses an LR

parsing table containing an action table and a goto table

that are constructed from a given context-free grammar to

build a parse forest for a sentence with respect to that

grammar. This parse forest shows the context-free

productions employed to legally produce the input sentence.

Using the example context-free grammar G, limit the

application of the Tomita parser to the productions:

(0) S -> S *B
(1) S -> *B
(2) START -> S

where START specifies the starting nonterminal (required in

Tomita's algorithm), S is a nonterminal, and *B is a

category nonterminal. Tomita requires the productions to be

in an alphabetically ordered array in order to facilitate

faster binary searches while building the LR parsing table,

and to allow quick array index references to specific

productions while parsing. In CONQUEST these rules are

bound to the array rules using LISP as follows:

25

(setf rules '# (
((S -> (S *B))
((S -> (*B))
((START -> (S))))

What about the productions:

*B -> 0
*B -> 1

where *B is a category nonterminal, and 0 and 1 are category

terminals? In the case that a subset of the English

language is to be represented, it is best to avoid

representing in the context-free grammar each production

where English grammatical categories (such as *determiner)

go to grammatical terminals (such as 'the). Otherwise, with

these productions included, the LR parsing table generated

from the context-free grammar would include each grammatical

category terminal, making the LR parsing table too large and

unnecessarily slowing down the system. So for "category"

rules a separate terminal lookup table is maintained to show

the category to which a terminal belongs. For the above

productions the lookup table would contain (0 *B) and (1

*B). In LISP this lookup table is set up as follows:

(setf lookup '#(
(0 *B)
(1 *B)))

The LR parsing table, containing the action and goto tables,

generated by Tomita's algorithm for the above grammar is:

26

����������������������������������
State
 *B $
 S
����������������������������������
 0
 sh2
 1
 1
 sh3 acc

 2
 re1 re1

 3
 re0 re0

����������������������������������

 action table
 goto table
����������������������������������

where *B is a category preterminal, and S is a nonterminal.

Two stacks are utilized by the Tomita parser, a state stack

and a parse tree stack, which are maintained so as to always

contain the same number of elements. Actually, there is no

separate parse tree stack. The parse tree stack is just the

set of pointers into the parse forest which coincide with

state stack elements. Table entries such as "sh n" mean

shift a new node (which contains the current preterminal

such as *B along with the corresponding terminal such as 0)

onto the parse forest, and push state n onto the state stack

(along with a pointer to the new top forest element).

Entries such as "re n" mean add rule n (referenced by index

n in the array) to the parse forest (along with pointers to

the parse forest node(s) it now dominates), reduce the state

stack elements (and parse tree stack elements) which

correspond to the now reduced node(s), and look at the top

state stack element and the new top parse forest production

to determine the new state. The entry "acc" stands for

accept the input sentence. The symbol $ signals the end of

27

an input sentence. Although a period would have been a more

intuitive end of sentence symbol, the LISP programming

language doesn't allow it. In LISP the previous action

table would be bound to the array table1 by the following

expression:

(setf table1 '#(
((*B (S 2)))
((*B (S 3)) ($ (A)))
((@ALL (R 1)))
((@ALL (R 0)))))

and the goto table would be bound to table2 by:

(setf table2 '#(
((S 1))
NIL
NIL
NIL))

It should be noted that, even though Tomita's variant

of LR parsing requires only one entry per table position as

in the case of unambiguous grammars, it allows several

entries making it suitable for use with ambiguous grammars.

This is especially useful, since natural language grammars

are usually ambiguous, requiring some form of

nondeterminism. In comparison, regular LR parsing

algorithms allow only one entry per table position.

Here is a trace of the input 0 1 $ according to the

above context-free grammar's rules and LR parsing table.

The trace will proceed through just enough steps that the

parsing process becomes clear, making the remaining steps

28

fairly self explanatory (refer to Table 1). Initially, the

system starts out with no current symbol, an empty parse

forest, an empty parse tree stack, and a stack state of 0.

The user enters the category terminal 0 and, by use of the

lookup table, the category preterminal *B becomes the

current symbol. With a current symbol of *B and a current

state of 0, the action table determines that "sh 2" is the

action to perform. The action "sh 2" shifts the preterminal

*B (along with the corresponding terminal 0) from its

current symbol status onto the parse forest (referenced by

pointer a), and pushes state 2 (along with a parse tree

stack pointer to element a of the parse tree stack) onto the

state stack.

Next, the user enters the terminal 1, so the

preterminal *B becomes the current symbol. With a current

symbol of *B and a current state of 2, the action table

specifies "re 1" as the next action. The action "re 1" uses

rule one (S -> *B) from the context-free grammar to reduce

the parse tree stack elements which point to the parse

forest nodes. In this case rule one reduces only one node,

so pop state stack element 2(a) which refers to the parse

forest element a, and add the production [S (a)] for the

reduced parse stack element a (corresponding to [S] -> [*B-

>0]) to the parse forest. Use the top parse forest

29

Table 1. PARSING STEPS FOR THE SENTENCE 0 1 $.

���
State stack

(with parse
 Current
 Next
 Parse forest
tree stack)
 symbol
 action

���
0
 ������
 input 0
 ������
���
0
 *B (0)
 sh 2
 ������
���
0,2(a)
 ������
 ������
 a [*B->0]
���
0,2(a)
 ������
 input 1
 a [*B->0]
���
0,2(a)
 *B (1)
 re 1
 a [*B->0]
���
0
 *B (1)
 goto 1
 a [*B->0], b [S (a)]
���
0,1(b)
 *B (1)
 sh 3
 a [*B->0], b [S (a)]
���
0,1(b),3(c)
 ������
 ������
 a [*B->0], b [S (a)],

 c [*B->1]
���
0,1(b),3(c)
 ������
 input $
 a [*B->0], b [S (a)],

 c [*B->1]
���
0,1(b),3(c)
 $
 re 0
 a [*B->0], b [S (a)],

 c [*B->1]
���
0
 $
 goto 1
 a [*B->0], b [S (a)],

 c [*B->1], d [S (b c)]
���
0,1(d)
 $
 acc
 a [*B->0], b [S (a)],

 c [*B->1], d [S (b c)]
���

30

Figure 3. Parse Tree

nonterminal S, the current state of 0, and the goto table to

push a state of 1 (along with parse tree stack pointer b

referring to the new top parse forest element) onto the

state stack. The rest of the parse proceeds in the same

manner.

The final parse forest in the

bottom row and right most column of

Table 1 corresponds in graphical form

to the parse tree in Figure 3. The

subscripts on nodes in Figure 3 are

used to tell which parse forest

elements the nodes appear in. For

example the node S in the parse tree appears in parsed

forest element d [S (b c)].

3.4 KNUTH'S ATTRIBUTE GRAMMAR TRANSLATION ALGORITHM

As noted before, the Knuth attribute grammar

translation algorithm is used to generate a possible

semantic meaning from a syntactically correct parse tree

produced by Tomita's parsing algorithm. To demonstrate

Knuth's technique the same simple example context free

grammar and parse tree from above will suffice. One

possible translation would be from the original binary form

to its decimal equivalent. In order to perform translations

31

using Knuth's algorithm the context-free grammar rules must

be modified to include semantic rules, thereby producing an

attribute grammar. One possible set of rules for the

conversion to decimal is:

Syntactic Rules Semantic Rules
S -> S *B n(S) = n(S) * 2 + n(*B)0 1 0 1

S -> *B n(S) = n(*B)
START -> S �����

The subscripts on variables in the first syntactic rule are

used only to demonstrate their correspondence to the

variables in the first semantic rule. For this binary to

decimal translation only one attribute (n) is required. The

last rule, START -> S, requires no semantic rule, since it

is not a part of the parse tree. This attribute grammar is

represented in LISP [30] by binding it to the atom

translationrules:

(setq translationrules
'((s s b) (((n 0) (+ (* (n 1) '2) (n 2))))
 (s b) (((n 0) (n 1)))

 (start s) nil))

where syntactic rules occupy the even numbered positions of

the list and corresponding semantic rules hold the odd

numbered positions. The unquoted numbers in the semantic

rules along with the attribute name refer to the attribute

values (n in this case) of the variables in the syntactic

rules. Zero refers to the first variable, one to the second

32

variable, and so on. Thus (((n 0) (+ (* (n 1) '2) (n 2))))

is the representation of n(S) = n(S)*2 + n(*B).0 1

To translate simply start at the preterminals and

proceed upwards in the tree, computing the attribute values

for each node as a function of its childrens' attribute

values. The attribute value for each preterminal for this

grammar is just the value of its child (0 or 1). The

attribute value of the root node (S in this case) is thed

result. Using the above parse tree, here is a possible

sequence of the translation steps for attribute n going from

node *B to node S :a d

1) n(*B) = 0a

2) n(S) = n(*B) = 0b a

3) n(*B) = 1c

4) n(S) = n(S)*2 + n(B) = 0*2 + 1 = 1d b c

The value of n at the top node is 1, therefore the result of

the translation is 1.

One distinct advantage of Knuth's algorithm is the

ability to pass attribute values both up and down a parse

tree. Information can be passed from a child to its parent

through synthesized attributes, and from a parent to its

children through inherited attributes. Although only

synthesized attributes were used in CONQUEST, a more

ambitious treatment of a larger (and more complex) English

subset would undoubtedly require the use of inherited

attributes as well.

33

3.5 LOGICAL FORM TO SQL CONVERSION PROCEDURE

For the purposes of CONQUEST, the translation process

above yields a logical form expression which must be

converted to an SQL query. How does the procedure that

accomplishes this work? Take a look at an example logical

form expression and the corresponding SQL expression that

should be produced. For this example the logical form

expression is:

(SETX 'X1
'(RELATION 'ZP '(PNO PNAME) '(X1 'SCREW) '(= =)))

The matching SQL expression is:

SELECT DISTINCT A.PNO, A.PNAME
FROM ZP A
WHERE A.PNAME = 'SCREW

What is the correspondence between this SQL expression and

the above logical form expression? If you recall from

Chapter 2, the logical form expression above denotes the set

of all values X1 from the relation 'ZP, such that there is a

tuple whose PNO attribute has the value X1, and the value of

its PNAME attribute is 'SCREW. For the translation to SQL

of such simple expressions, only three basic steps need be

followed. First, in the SQL clause specify which relation

is to be used. The logical form expression specifies that

the relation ZP will be used, so in the SQL clause include

the FROM clause, FROM ZP A, which specifies the relation ZP,

but afterwards (in this SQL expression) refer to it with the

34

alias A. Therefore, in this instance A is just another name

for a tuple of the relation ZP.

Second, in the logical form expression the attribute

values PNO and PNAME are the ones in question, so list the

(PNO, PNAME) attribute value tuples that meet the required

conditions by including SELECT DISTINCT A.PNO, A.PNAME in

the SQL clause. In actuality the logical form expression

really only specifies the set of PNO attribute values that

meet the condition, but also list the corresponding PNAME

attribute value to provide added clarification.

Lastly, specify the conditions that must be met in

order for the desired (PNO, PNAME) attribute value tuples to

be listed. The above logical form expression specifies that

only those (PNO, PNAME) attribute tuple values where the

PNAME attribute value is 'SCREW should be listed, so in the

SQL clause indicate this by including WHERE A.PNAME =

'SCREW.

In this simple case the conversion from logical form to

SQL was fairly straightforward. Less simple cases involve

embedded relations and SETX expressions, and arithmetic

(such as SUM) and logical expressions (such as OR).

35

CHAPTER FOUR

ILLUSTRATION OF SYSTEM OPERATION

4.1 DATABASE STRUCTURE USED

The database relation around which the system was

designed is named courses and is set up with the following

structure:

��������/�������/����������/������/��������/����������������
� NEWNO
 OLDNO
 CRED_HRS
 NAME
 PREREQ
 DESCRIP �
.��0
� 1200
 320
 3
 MIS
 1010
 Info systems �
� 2100
 410
 3
 ASSL
 1200
 Assembly lang �
� 3300
 530
 4
 OS
 2300
 Op systems �
��������1�������1����������1������1��������1����������������
where newno, oldno, cred_hrs, name, prereq, and descrip are

attribute names corresponding to the hypothetical attribute

values in the tuples immediately below them.

4.2 SYSTEM INITIALIZATION

For CONQUEST to perform translations from English to

SQL, the main procedure parsesentence (see Appendix C) is

called. However, before translations can begin, several

variables must be initialized. First, the array rules (see

Appendix A) is set to contain the context-free grammar rules

36

used by Tomita's algorithm. These rules are derived from

the original attribute grammar rules (see att_rules in

Appendix A) by calling the procedure convert_gram (see

Appendix C).

If the LR parsing table (consisting of the action and

goto tables) has not yet been determined, it must be

developed, otherwise just loaded. The LR parsing table is

constructed from the context-free productions bound to rules

by calling the procedure construct (see Appendix C). The

resulting action and goto tables (belonging to the LR

parsing table) appear in Appendix A.

Next, the original attribute grammar rules (att_rules)

are converted to translationrules (see Appendix A) by the

procedure convert_trans (see Appendix C) for use later on by

the Knuth translation procedures. This is done during

initialization to avoid causing delays later on during

execution of the interactive portion of the system.

A full trace of system operation to which references

will be made from now on appears in Appendix B, Example

Query 1. The first initialization the user sees is when

CONQUEST asks whether or not speech input should be

recognized. If speech input will be used, the COVOX speech

recognition system is loaded and calibrated. Next, the user

specifies whether or not spoken computer output is preferred

37

(CONQUEST will only speak during parsing since SQL queries

aren't very well suited for speech), and if it is, the

necessary programs are loaded, and the user must turn on the

speaker. Lastly, the user answers whether or not

translation should be timed.

4.3 PARSING PROCESS

After the system is initialized, parsing begins with

the user giving his English sentence or query one word at a

time, either by means of the speech recognition system or by

typing. Special commands include back which causes the

system to erase the last word of the current sentence, clear

which clears out the entire sentence, and quit which causes

the procedure to abort. As can be seen from the example,

the user continues entering words (category terminals) with

no system interference as long as no errors are made, or no

special commands are entered. If an error occurs, CONQUEST

signals the error, checks all the possible category

preterminals (bound to the variable preterms in Appendix A)

to see which ones offer a legal continuation, then prompts

the user with a list of the possible grammatical category

preterminals and an example of the terminals that fall

within each category (determined from the array lookup in

Appendix A). If the user issues a back or clear, the system

38

prompts the user with the new sentence, and says to begin

entering words again.

If all goes as planned, parsing continues with the

entire sentence accepted as soon as the user enters the

symbol $. In the case of Example Query 1, the accepted

sentence is "Give a description of course number 1200" and

the resulting parse tree is bound to fa.

4.4 TRANSLATION PROCESS

As soon as the sentence is syntactically accepted, user

interaction with the system has basically ended, and

translation begins. CONQUEST now calls the procedure

converttree (see Appendix C). This converts the parse tree

in the array fa to a parse tree in the list parses, in order

to be compatible with Petrick's translation procedures. The

procedure ktransbt (see Appendix C) is invoked to translate

the parse tree to logical form, according to the attribute

grammar rules in translationrules, and the result is bound

to the atom translation1.

4.5 LOGICAL FORM TO SQL CONVERSION PROCESS

To finish the conversion to SQL, translation1 is fed as

input to the procedure lftosql1 (see Appendix C), and the

result is bound to the atom translation2. The atom

39

translation2 is in turn passed to the procedure printsql1

(see Appendix C) which prints the SQL query.

4.6 OTHER EXAMPLES

Traces of some other example sentences which are

handled by CONQUEST appear in Appendix B, Example Queries 2

through 11. The output appears precisely as it would during

normal system operation with no variable trace information

cluttering up the screen. Other sentences of the same types

shown are also possible by exercising a slight variation of

the terminals chosen.

40

CHAPTER FIVE

CONCLUSION

At the present time CONQUEST is a relatively user-

friendly system due to several pronounced advantages.

First, it allows communication by speaking, a method by

which most users are likely to be more comfortable. Second,

CONQUEST allows users to communicate in a fairly immediate

manner. The speed of parsing within CONQUEST is very fast,

taking only seconds for the simple queries allowed (see

Appendix B, Example Query 1 for the timing). Either with

error-free queries or with error-filled queries, the user

experiences only minimal delay before being allowed to enter

the next in a sequence of words. This is perhaps close

enough to continuous speech that the perception of talking

with someone rather than something is enhanced.

Another advantage is that CONQUEST provides helpful

error diagnostics to the user during query entry. This

obviously makes CONQUEST more user-friendly than systems

which simply signal an error, but offer no suggestions about

what next to try. It seems in this way that the user

41

communicates more with the system (especially when speech

output is used), rather than at the system.

In addition, by no means rivaling high speed typing,

the COVOX speech recognition system does function at a

relatively high speed, offering CONQUEST the advantage (in

the event that the spoken word is recognized properly) of

mistake free data entry. It seems more natural to speak a

word correctly and be understood, than to incorrectly type a

word that will most definitely be misunderstood.

Despite these advantages, CONQUEST does have some

weaknesses. As you can see, there is little variety in the

sentences CONQUEST can currently handle. As mentioned

before, there were two main reasons for this restriction.

First, in order to use the COVOX speech input system,

Goldworks I had to be chosen, limiting the grammar size to a

small set of simple rules, and, as a consequence, allowing

representation of very few sentence complexities and

paraphrases. Second, the low vocabulary size of the COVOX

speech recognition input system also limited sentence

complexity and paraphrasing. These two restrictions led to

the incorporation of a context-free grammar of limited size.

This, in turn, restricted the complexity and variety of

sentences that could be processed. As it now stands, this

restricted set of sentences severely limits the practicality

of CONQUEST, because it both limits the number of query

42

types a person can make and limits the number of available

paraphrases a user can make. Since Petrick's procedures

were already programmed to handle a high variety of complex

queries, getting CONQUEST to handle more advanced sentences

through the use of more advanced grammar representations and

more powerful speech recognition input, would be a logical

improvement. As mentioned in Chapter 3, it would also be

advantageous to integrate with the speech input system, the

ability to recognize numbers, especially in the case of

numerically oriented database relations.

Time limitations also restricted CONQUEST development,

although they were not as critical. In order to get

CONQUEST in working order, no great deal of time was spent

making any one part of the system especially sophisticated,

or making components well suited to each other. Since the

simple grammar type was already the dominant limiting factor

and required no additional component efficiency, there was

no reason to make the rest of the system particularly

efficient. One example of this was the different grammar

and tree structure representations used throughout CONQUEST.

It would be preferable to modify some of the components

(procedures) so that it isn't necessary to convert grammars

from Tomita's array type to Petrick's list type, or from

Tomita's parse forest to a list of parse trees for Petrick's

procedures. Practical situations requiring larger grammars

43

and larger parse forests (trees) would absolutely demand

optimizations such as these, in order to avoid unduly

slowing down the system. All in all, it seemed that a great

deal of time and effort was spend translating procedures

from their original LISP dialects to the Common LISP dialect

dictated by the Goldworks I system, and integrating

components so that they could correctly operate together.

With these time limitations CONQUEST never evolved to

the point where the generated SQL queries were fed as input

to an actual database system, in turn yielding information

from a database relation. In the future an obvious next

step would be to find an appropriate interface between

CONQUEST and some SQL compatible database system (such as

dBASE IV).

If and when CONQUEST is interfaced with a database

system, and the user is able to enter a natural language

query and receive information back, how does he know that

the information is valid? An apparent solution would be the

inclusion of a feature to convert the generated SQL query

back to English so that the user can determine by an

alternate wording whether or not the meaning of the original

English sentence was taken as intended. [32]

These limitations notwithstanding, the abilities of

CONQUEST as it now stands and the future possibilities of a

system of this type demonstrate the benefits of integrating

44

speech and nondeterministic syntactic processing to produce

a more user friendly system in comparison to menu-cluttered

and/or deterministic natural language front end systems.

45

LIST OF REFERENCES

1. Plath, W. J. "REQUEST: A Natural Language Question-
Answering System." IBM Journal of Research and
Development 20 (July 1976): 326.

2. Hendrix, G. G. et al. "Developing a Natural Language
Interface to Complex Data." ACM Transactions on
Database Systems 3, No. 2 (June 1978): 105-147.

3. Woods, W. A., Kaplan, R. M., and Nash-Webber, B. "The
Lunar Sciences Natural Language Information System."
BBN Report. 2378 Cambridge, MA: Bolt Beranek and
Newman, Inc., 1972.

4. Thompson, F. B. et al. "REL: A Rapidly Extensible
Language System." In Proceedings of the Twenty-fourth
National Conference of the ACM New York: (1969), 399.

5. Reisner, P. "Human Factors Studies of Database Query
Languages: A Survey and Assessment." Computing Surveys
13, No. 1 (March 1981): 13-31.

6. Herschmann, R. L., Kelley, R. T., and Miller, H. C.
"User Performance with a Natural Language Query System
for Command Control." NPRDC TR 79-7 San Diego, CA: Navy
Personnel Research and Development Center, 95152,
January 1979.

7. Tennant, Harry R. et al. "Menu-based Natural Language
Understanding." In 21st Annual Meeting of the
Association for Computational Linguistics: Proceedings
of the Conference. Cambridge, MA: MIT (June 1983), 151-
158.

8. Ross, Kenneth. "Parsing English Phrase Structure."
Ph.D. dissertation, University of Massachusetts,
Amherst, September 1981.

9. Voice Master Key User Manual. Version 2.00, Eugene, OR:
COVOX, Inc., 1989.

46

10. Goldworks Expert System User's Guide. Version 1.0,
Cambridge, MA: Gold Hill Computers, Inc., 1987.

11. Speech Thing User Manual, 4th ed., Eugene, OR: COVOX,
Inc., 1989.

12. The VoiceScribe-1000 User System and The VoiceScribe-
1000 Developer's System. Dragon Systems, Inc., Newton,
MA (March 19, 1990).

13. DragonDictate. Dragon Systems, Inc., Newton, MA (March
19, 1990).

14. Petrick, S. R. "A Recognition Procedure for
Transformational Grammars." Ph.D. dissertation, MIT,
Cambridge, MA, 1965.

15. Peters, P. S., and Ritchie, R. W. "On the Generative
Power of Transformational Grammars." Information
Sciences 6 (1973): 49-83.

16. W. A. Woods. "Transition Network Grammars for Natural
Language Analysis." C. Association for Computing
Machinery 13, No. 10 (Oct. 1970): 591-606.

17. Gazdar, G. et al. Generalized Phrase Structure Grammar.
Oxford, UK: Blackwell, and Cambridge, MA: Harvard
University Press, 1985.

18. Pereira, Fernando C. N., and Warren, David H. D.
"Definite Clause Grammars for Language Analysis: A
Survey of the Formalism and a Comparison with Augmented
Transition Networks." Artificial Intelligence 13
(1980): 231-278.

19. Griffiths, T. V., and Petrick, S. R. "On the Relative
Efficiencies of Context-Free Grammar Recognizers."
Communications of the ACM 8, No. 5 (May 1965): 289-300.

20. Slocum, J. "A Practical Comparison of Parsing
Strategies." In Proceedings of the 19th Annual Meeting
of the ACL, Stanford, CA: Stanford University (1981),
1-6.

21. Petrick, S. R. "Parsing." In Encyclopedia of Artificial
Intelligence. Ed. S. Shapiro. John Wiley & Sons, Inc.
(1987), 687-696.

47

22. Tomita, Masaru. "An Efficient Augmented-Context-Free
Parsing Algorithm." Computational Linguistics 13, Nos.
1-2 (Jan.-June 1987): 31-46.

23. Younger, D. "Recognition and Parsing of Context-Free
Language in Time n ." Information and Control 103

(1967): 189-208.

24. Earley, J. "An Efficient Context-Free Parsing
Algorithm." Communications of the ACM 6, No. 8 (1970):
94-102.

25. Tomita, Masaru, "An Efficient Context-Free Parsing
Algorithm for Natural Languages and Its Applications,"
Ph.D. dissertation, Carnegie Mellon University, May
1985, distributed by University Microfilms
International, Ann Arbor, Mich.

26. Petrick, S. R. "Semantic Interpretation in the REQUEST
System." In COMPUTATIONAL AND MATHEMATICAL LINGUISTICS,
Proceedings of the International Conference on
Computational Linguistics. Eds. A. Zampolli and N.
Calzolari, Pisa 27 VIII-I/IX 1973, Casa Editrice
Olschki, Firenze, Vol. II., 585-610.

27. Irons, E. T. "A Syntax-Directed Compiler for ALGOL 60."
Communications of the ACM 4, No. 1 (January 1961): 51-
55.

28. Montague, R. "The Proper Treatment of Quantification in
Ordinary English." In Formal Philosophy. Ed. R. M.
Thomason. Yale University Press: (1973).

29. Knuth, Donald E. "Semantics of Context-Free Languages."
Mathematical Systems Theory 2, No. 2 (New York:
Springer-Vertag, June 1968), 127-145.

30. Petrick, S. R. "On the Use of Syntax-Based Translators
for Symbolic and Algebraic Manipulation." In
Proceedings of the SECOND SYMPOSIUM ON SYMBOLIC AND
ALGEBRAIC MANIPULATION. Ed. S. R. Petrick. New York :
ACM SIGSAM (March 1971), 224-237.

31. Picone, Joseph. "Continuous Speech Recognition Using
Hidden Markov Models." IEEE ASSP Magazine 7, No. 3
(July 1990): 26-41.

48

32. Miller, Todd A. "The SQLENG System: An SQL To English
Translator Using Attribute Grammars." University of
Wyoming, Laramie, August 1989.

