
CARMA: Platform Freedom for a Graphical Lisp Application
through Armed Bear Common Lisp

John D. Hastings

Dept. of Computer Science
University of Nebraska-Kearney

Kearney, NE, USA

hastingsjd@unk.edu

Alexandre V. Latchininsky

Dept. of Renewable Resources
University of Wyoming

Laramie, WY, USA

latchini@uwyo.edu

Abstract

CARMA is an advisory system that uses artificially-
intelligent techniques including case-based reasoning
to provide advice about the most environmentally and
economically effective responses to grasshopper infes-
tations. CARMA’s core AI reasoner was initially writ-
ten in Common Lisp and integrated with an Allegro
Common Lisp for Windows graphical user interface
(GUI). CARMA went public in 1996 and has been
used successfully since. Recently, CARMA’s architec-
ture was reworked in order to avoid periodic develop-
ment and deployment fees, and to produce a platform-
independent system by following a philosophy called
platform freedomwhich emphasizes freedom from
both platform dependence and software costs. The im-
plementation also demonstrates an approach to creating
a Lisp application with an appealing GUI which is web
capable. This paper details CARMA’s new architecture
including the two-way communication between the two
distinct main parts: 1) a Lisp AI reasoner which runs
inside the Armed Bear Common Lisp interpreter which
in turn runs inside the Java interpreter (JVM), and 2) a
Java GUI which runs inside the JVM.

Keywords Lisp, Java, architecture, decision support,
grasshopper management, artificial intelligence, case-
based reasoning, approximate-model-based adaptation

Copyright is held by the author/owner(s), who have granted to the Associ-
ation of Lisp Users the right to republish in any form and all media, and to
transfer or sublicense those rights to third parties. Permission to make dig-
ital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this noticeand the full
citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

International Lisp Conference March 22–25, 2009, Cambridge, MA, USA

1. Introduction

CARMA is an advisory system for grasshopper infesta-
tions that has been successfully used since 1996 (Hast-
ings, Branting, & Lockwood 2002). CARMA, short
for CAse-based Rangeland Management Advisor, em-
ploys a variety of artificially-intelligent (AI) techniques
to provide advice about the most environmentally and
economically effective responses to grasshopper infes-
tations. In the process, CARMA demonstrates an ap-
proach to providing advice concerning the behavior of
a complex biological system by exploiting multiple, in-
dividually incomplete, knowledge sources (Hastings,
Branting, & Lockwood 1996) including utilization of a
technique known asapproximate-model-based adapta-
tion which integrates case-based reasoning with model-
based reasoning for the purposes of prediction within
complex physical systems.

CARMA’s core AI reasoner was written in Com-
mon Lisp and was integrated with an Allegro Com-
mon Lisp for Windows interface. CARMA went pub-
lic in 1996 and has been used successfully since. Re-
cently, in order to avoid periodic development and de-
ployment fees, and to produce a platform-independent
system, CARMA’s architecture was reworked. We call
this general philosophyplatform freedombecause it ad-
vocates the freedom to execute the application on a
wide variety of platforms, as well as the freedom to
develop and execute the application for and on those
platforms using freely available technologies. In addi-
tion to platform independence, CARMA’s implemen-
tation demonstrates an approach to creating a web-
capable Lisp application with an appealing GUI. This
paper details the new architecture with a particular fo-
cus on the two-way communication between the two

99

distinct main parts: 1) the Lisp AI reasoner which runs
inside the Armed Bear Common Lisp (ABCL) inter-
preter and 2) a Java GUI which runs inside the Java in-
terpreter or Java “virtual machine” (JVM). The authors
provided a cursory introduction of this approach in a
paper (Latchininsky, Hastings, & Schell 2007) which
focused mainly on CARMA’s value as an advisor and
provided only general details of the integration.

Section 2 provides a brief overview of CARMA and
its problem domain. Section 3 touches on the main
contribution of CARMA to the field of AI. Section 4
describes CARMA’s initial implementation and is fol-
lowed in Section 5 by challenges to CARMA’s long
term success resulting from early design decisions. The
redesigns considered for CARMA are set forth in Sec-
tion 6, with the chosen solution, ABCL/Java, intro-
duced in section 7. Section 8 provides technical details
of the ABCL/Java integration within the new CARMA,
followed in Section 9 with some of the challenges en-
countered during the update.

2. CARMA: Grasshopper Infestation
Advisor

Grasshoppers annually consume about 25% of range-
land forages in the 17 western U.S. states at an esti-
mated loss of US$950 million. Figure 1 shows a hop-
per band of the Clearwing grasshopper in Wyoming.
It illustrates the potential severity of grasshopper in-
festations where densities may reach as high as sev-
eral hundred grasshoppers per square yard over ex-
tensive rangeland areas. During outbreaks, grasshop-
pers inflict severe damage to rangeland and crops and
require large-scale insecticide applications to control
them. For example, during the 1986-88 outbreaks, 20
million acres of rangeland were treated with 1.3 mil-
lion gallons of insecticides at a cost of US$75 million.
Since the 1980s, the federal funding for grasshopper
pest management has dwindled dramatically. Nowa-
days the responsibility for grasshopper control in the
U.S. is borne almost entirely by the producer. There-
fore, there is a compelling need to develop efficient,
economically and environmentally viable strategies of
grasshopper management. Such strategies would sus-
tain agricultural profits, reduce the insecticide expense
and preserve non-target fauna.

CARMA is a decision-support system which targets
the end-users (ranchers and farmers) and addresses the
need for proper grasshopper infestation response (Lat-

Figure 1. Hopper band of early instar nymphs of the
Clearwing grasshopperCamnula pellucida, one of the
most important economic pest grasshopper species in
the western U.S. Photo: A. Latchininsky.

chininsky, Hastings, & Schell 2007). CARMA gives
advice by comparing the current infestation to known
previous infestations (i.e., cases) and adapting manage-
ment recommendations accordingly. Infestation proba-
bilities and treatment efficacies are used to predict re-
infestations (Branting, Hastings, & Lockwood 1997;
Zimmerman, Lockwood, & Latchininsky 2004); statis-
tical methods are used to predict the economic bene-
fits; and rules are used to select the treatments. In ad-
dition to conventional, blanket applications of insec-
ticides, CARMA includes an option called Reduced
Agent and Area Treatments (RAATs) (Lockwood &
Schell 1997) in which the insecticide dose rates are re-
duced from conventional levels by alternating treated
and untreated swaths. This results in a lower environ-
mental impact and cost of the treatment program. In
2003, the RAATs strategy was applied to 400,000 acres
in Wyoming which saved half a million US dollars for
local agriculturists. The contribution that CARMA has
played and continues to play in supporting the develop-
ment and implementation of sustainable pest manage-
ment strategies such as RAATs is detailed in Hastings,
Latchininsky & Schell(2009).

Initially, the geographic extent of CARMA was lim-
ited to Wyoming rangelands. In 2003, a special mod-
ule dealing with grasshopper infestations in cropland
was developed. It handles situations when grasshopper
populations build up at the rangeland-cropland inter-
face and spread into cropland, such as small grains. In
recent years, several western states expressed interest in

100

CARMA, which resulted in the expansion of its capa-
bilities. In addition to Wyoming, the geographic extent
of CARMA currently covers grasshopper infestations
in Colorado, Montana, Nebraska, New Mexico, North
Dakota, Oregon, and South Dakota.

3. Contribution to AI

CARMA’s particular problem domain, rangeland pest
management advising, requires in part predicting the
forage consumption by grasshoppers in an infesta-
tion. As is typical of biological systems, the interac-
tions affecting grasshopper population dynamics are
too poorly understood and too complex to permit pre-
cise prediction through numerical simulation (Lock-
wood & Lockwood 1991).

CARMA counters the complexity of the task by in-
troducing a novel AI approach termedapproximate-
model-based adaptation1 (Hastings, Branting, & Lock-
wood 1995; Branting & Hastings 1994) which utilizes
case-based reasoning to provide an approximate solu-
tion and model-based reasoning to adapt this approxi-
mation into a more precise solution. Cases compensate
for model incompleteness and the model compensates
for insufficient coverage by the cases. Approximate-
model-based adaptation is most applicable to complex
physical systems with models and empirical data which
are individually insufficient for the purposes of predic-
tion.

CARMA employs approximate-model-based adap-
tation to make forage consumption predictions as fol-
lows. Each case represents a prototypical infestation
scenario with an associated forage loss. New infesta-
tions are compared to prototypical cases to identify the
most similar previous infestations, and the model is em-
ployed to account for any differences between the pro-
totypical cases and the new infestation by adjusting the
prototypical case estimates in order to provide a forage
loss prediction for the new infestation.

4. CARMA: The Early Years

The Lisp programming language was invented in 1958
(Steele & Gabriel 1993). Lisp was known as an ar-
tificial intelligence (AI) language for years (Graham
1993), and still holds a special place amongst AI en-
thusiasts due in part to its ability to evolve through the
implementation of new operators and abstractions us-

1 Approximate-model-based adaptation is defined and contrasted
with perfect-model-based adaptation in Branting(1998).

ing the Lisp language itself (Graham 1996), and the
ease through which it can support elegant solutions to
problems too complex to solve conveniently with con-
ventional programming languages.

Figure 2. CARMA – a grasshopper infestation advi-
sor. CARMA logo adapted from artwork in Capinera
& Sechrist(1982).

A variety of not entirely compatible Lisp flavors
were combined to produce Common Lisp, with the
first specification appearing in Steele(1984), followed
by standardized ANSI Common Lisp which was pre-
viewed in Steele(1990). It was around this time (early
90’s) that work on CARMA began. Given that CARMA
was an AI system, the choice of Lisp was completely
natural. The AI core of CARMA was written in Com-
mon Lisp and was able to run on any platform (e.g,
Linux, Macintosh, Windows) for which a Lisp inter-
preter was available. Initially, CARMA was a research
tool with development and experimentation conducted
on Sun Sparc and Silicon Graphics machines.

In order to fully develop CARMA into a user-
friendly advising system, the Common Lisp core was
augmented with a GUI implemented in Allegro Com-
mon Lisp (ACL) for Windows. CARMA was released
to the public as CARMA 2.0 in 1996 and was sub-
sequently featured as a customer success story on the
Franz, Inc. website (Franz, Inc. 2008).

5. Impediments to Long-term Success

While CARMA operated perfectly for several years,
aggravation set in when changes to Windows in turn

101

led to required upgrades (and expenses) to ACL for
Windows, which in turn necessitated time consum-
ing changes to CARMA. While the expense of ACL
may be compatible with commercial problem domains,
CARMA is a non-commercial, public-service product
which has little to no revenue stream: CARMA is pro-
vided free of charge and thus brings in no distribution
income, and it targets a problem domain for which de-
velopment funding is quite limited. As such, CARMA
does not monetarily support periodic upgrades of the
development software, particularly a variety for which
deploying developed applications (ACL Enterprise) is
more expensive than the standard developmental ver-
sion (ACL Professional). Furthermore, CARMA’s rev-
enue stream rarely supports the staffing necessary to
make periodic coding changes, thus, long-term stabil-
ity of the software is a key concern.

Avoiding “maintenance” expenses that had little to
do with the application itself, and were instead tied
to external changes in the operating system or Lisp
environment was combined with a desire to provide a
multi-platform product. Although CARMA’s Lisp AI
core was capable of running on multiple platforms,
the GUI was restricted specifically to Windows. Our
long term goal was to open up CARMA to a wider
user base. At the time that our concerns came to a
head (around the early 00’s), a separate license was
required for ACL for each platform, and furthermore,
ACL did not seem to offer the support for conveniently
developing standalone applications with a consistent
GUI with a shared code base which would be capable
of running on various platforms.

Common sense, then, dictated a solution not tied to
a single platform and not dependent on a fee-based de-
velopment environment for which CARMA would con-
tinue to face periodic, upgrade fees and time consum-
ing updates. The challenge was then to formulate an
approach which would make CARMA “platform free”
by making it accessible on a wide variety of computing
platforms using freely available technologies, with a
particular need to rework the GUI through a free graph-
ical language.

6. Architectural Possibilities

A variety of “free” approaches to reworking CARMA’s
architecture were considered. Each of the possibilities
include some use of Java (Goslinget al.2000), an inter-
preted programming language with acceptable graph-

ical capabilities and a nice degree of platform inde-
pendence tied to the availability of a Java interpreter
for a relatively wide variety of operating systems. The
considered approaches are summarized in the follow-
ing subsections.

6.1 Complete rewrite in Java

A complete rewrite of both CARMA’s Lisp AI core and
GUI in Java would provide platform independence of
the entire application. It is in fact not uncommon to see
AI systems, e.g., Weka (Witten & Frank 2005), written
in Java even if such coding is not entirely natural or ele-
gant. However, given that CARMA’s Lisp core contains
thousands of lines of code, and Lisp and Java are en-
tirely different languages, a complete rewrite would be
time consuming, if not overwhelming. Particular items
that would make a Java rewrite unpleasant include:

• Lisp built-in list structures which are used exten-
sively in CARMA, and

• the ability in Lisp to use identifiers without specif-
ically declaring their associated data type, a feature
used for each of CARMA’s variables.

It appears that the amount of code would explode if
completely converting to Java. The lack of elegance of-
fered by a total Java solution also represents a psycho-
logical hurdle to a long time Lisp aficionado.

6.2 Server-side Lisp

An Apache server module named modlisp (Battyani
2008) would make the Lisp AI reasoner available
through Apache and would require developing an outer
web interface (e.g., using Java). An advantage would be
that the Lisp reasoner would likely require few changes
and/or additions in order to integrate with the web inter-
face. A second advantage would be that CARMA could
be updated or revised as needed (e.g., to remain consis-
tent with the latest grasshopper management practices
or to include new data) and the new version would be
immediately available by running it from the CARMA
website rather than notifying users that they should
download and install the most recently released ver-
sion. The disadvantages include a dependence on up-
time of the server, and a discontinuation of the option
to install and run CARMA locally (a rather large dis-

102

advantage for users who access CARMA in the field or
other remote locations without Internet access).2

6.3 Java / Lisp communication framework

Jacol (Lowdermilk 2002) is a framework for supporting
communication between Java and Common Lisp using
sockets. It allows Common Lisp to act as an extension
language for Java although it is also said to expose Java
APIs to Lisp. This framework could potentially allow
the CARMA Lisp AI reasoner to be integrated with a
Java GUI. The slight disadvantage to this approach is
that Jacol is said to require CLISP (CLISP 2008), and
would thus result in logistical complications in order
to make CARMA conveniently available on multiple
platforms (e.g., Could or should CARMA be bundled
with CLISP for each platform, or would the user be
required to complete an additional step by obtaining
CLISP separately?). This choice would also restrict
CARMA to the fewer platforms for which CLISP is
available. As another option, Jacol might also support
a client/server configuration (such as that described in
the previous section). In limited testing, Jacol did not
seem to represent a sufficiently mature solution and
was unlikely to progress further given that development
appeared to cease in 2002.

6.4 A Lisp interpreter written in Java

A Lisp interpreter written in Java could run CARMA’s
AI core and could include hooks to provide access from
the Lisp code to Java’s graphical capabilities. A dis-
advantage of this approach would be the inefficiency
of running an interpreter inside another interpreter, i.e.,
CARMA’s AI core would run through a Lisp interpreter
running inside a Java interpreter. In addition, writing a
Lisp interpreter (in Java) would be a daunting task rel-
ative to making an existing application continue to run,
especially given a lack of time and resources. As with
the previous two approaches, an advantage would be
that the Lisp AI core would need few changes. Addi-
tional advantages would include support for an appeal-
ing GUI, and platform independence (i.e., CARMA
could run inside this new Lisp interpreter on any plat-
form for which a Java interpreter is available). In addi-
tion, by being wrapped inside a Java-coded interpreter
and not tied to a Lisp implementation on a particu-

2 Recently, a option called ABCL-web (ABCL-web 2008) has be-
come available, although it is currently in alpha, and was not avail-
able at the time of the decision.

lar platform, CARMA’s code would be somewhat in-
sulated from changes to operating systems (e.g., Mi-
crosoft) assuming that the Java language does not un-
dergo periodic changes which would then require main-
tenance of the new interpreter. A further advantage of
this approach is that CARMA would be capable of run-
ning either as a platform-independent standalone ap-
plication (by downloading and installing) or through
a web browser using Java Web Start, an option which
would allow users to conveniently access and run the
most current version of CARMA (assuming support by
the browser).

7. Survey Says: ABCL

Small prototypes for the first three options were devel-
oped and subsequently deemed unacceptable due gen-
erally to the disadvantages mentioned above. In 2003,
shortly after we initiated the effort to write a Lisp inter-
preter in Java (the fourth option), Peter Graves fortu-
nately beat us to the punch with Armed Bear Common
Lisp (ABCL) (Graves 2008). ABCL is a very capable
Common Lisp implementation that runs within a Java
interpreter. According to the ABCL website, the most
recent version, ABCL 0.0.11, is said to fail “only” 47
out of 21702 tests in the GCL ANSI test suite.3 In terms
of its abilities for the subset of Lisp used in CARMA
(which makes some use of CLOS), ABCL produced ex-
pected results for CARMA’s test cases as did the avail-
able versions of CLISP and ACL, while GNU Common
Lisp (GNU 2008) did not.

With the availability of ABCL, attention quickly
shifted to developing the Java GUI and linking it to
CARMA’s AI core through ABCL. An overview of the
new architecture of CARMA is given in the next sec-
tion.

8. The New Architecture

CARMA appears to the user as a Java application, al-
though the logic and primary program control resides
within the Lisp AI core. CARMA’s architecture, illus-
trated in Figure 3, is comprised of two distinct compo-
nents:

1. A Java GUI which runs as a Java application through
the JVM, and

3 ABCL 0.0.8, the version used within CARMA, fails only slightly
more test cases although I am no longer able to find those statistics.

103

2. The AI core which runs as a Lisp application through
the ABCL interpreter (which in turn runs through
the JVM).

CARMA Java GUI

ABCL (Interpreter)

CARMA Lisp Core

Lisp

BridgeString inquiry(String args)

String evaluate(String sexpr)

Java

Bridge

Java VM

Figure 3. A general overview of the architecture of
CARMA.

Two-way communications between the Lisp and
Java components are handled by bridge modules. In
general, the Lisp bridge creates the Java bridge object,
and through this connection directs questions and mes-
sages to the Java bridge whenever such information
should be presented to the user through the GUI. The
Java bridge is responsible for answering such user in-
put requests, and is in turn capable of making requests
of the Lisp bridge when a user requests a clarification
(e.g., hitting a “Help” button) which is in turned han-
dled by the Lisp AI core (which retains the domain
logic).

Notice in Figure 3 that theevaluate andinquiry
methods are the primary means of communication be-
tween the two sides.inquiry is a method defined
within the Java bridge and is called from the Lisp side.
evaluate is a Java method within ABCL to which
Lisp s-expressions can be passed for evaluation. Al-
thoughevaluate is technically part of ABCL, it is
the means through which Lisp bridge functions can be
called from the Java side.

An overview of the two-way communication be-
tween the two components within the context of an ad-
vising session is as follows:

1. CARMA is executed as an ordinary Java applica-
tion with a standard Java GUI, in this case a Swing
JFrame class calledCarmaFrame. During initializa-
tion of CarmaFrame (in its constructor), the user is
presented with a Java splash screen (shown in Fig.
2) during which timeCarmaFrame:

(a) forces the ABCL interpreter to load into the JVM
by evaluating a dummy Lisp expression using the
statement:

org.armedbear.lisp.Interpreter

.evaluate("(+ 3 5)");

(b) instructs ABCL to load the CARMA Lisp AI core
source files into the Lisp interpreter one by one
by calling:

LispLoad.loadCarmaFile(lisp-filename,

false, false, false);

All of CARMA, including ABCL, is bundled
within a single Java jar (Java archive) file. The
loadCarmaFile method withinLispLoad is a
slightly modified version of theload method
within the Load class provided by ABCL such
that the JavaURL class andopenStream method
are used to allow loading of the CARMA Lisp
source files into the ABCL interpreter from the
jar file.

The previous two initialization steps are conceptu-
ally part of the Java bridge in the sense that the Java
side is contacting the Lisp side, although they are
performed prior to the creation of a specific Java
bridge object through which most communication
on the Java side is channeled.

2. Once initialization is complete and the CARMA
GUI has appeared, the user is presented with a selec-
tion of menu options, the most important of which is
the option to run a new advising consultation. When
the user chooses “New consultation”, the selection
triggers the following Lisp command from the Java
side which requests the Lisp bridge to run a consul-
tation and in the process transfers control of code
execution to the CARMA Lisp AI core:

org.armedbear.lisp.Interpreter

.evaluate("(consultation nil)");

3. With control transferred to the Lisp side, the Lisp
bridge initializes the Lisp to Java communication
path as follows:

(a) If a Java bridge object has not yet been created,
it is instantiated using the ABCL functionsjnew
andjconstructor:

(setq *java-bridge-object* (jnew

(jconstructor "Bridge")))

“Bridge” is the name of the Java class from which
the Java bridge object is instantiated. ABCL has
the option of linking to a Java constructor with
parameters but that feature was not necessary in
our implementation.

104

Figure 4. Elicitation of Grasshopper Type Information in CARMA.

(b) Links to Java bridge methods are made using the
ABCL functionjmethod, e.g.,

(setq *java-bridge-inquiry-method*

(jmethod "Bridge" "inquiry"

"java.lang.String"))

In this case,inquiry is specified to be a Java
method tied to aBridge object which accepts
a singleString argument. Although ABCL al-
lows a connection to Java methods with multi-
ple parameters and with various types, the deci-
sion was made to keep the connection simple and
pass parameters across in a singleString. When
a specific inquiry requires multiple parameters,
they are concatenated into a single string, passed
across and parsed on the Java side. The reason for
this design choice is explained in the next section.

4. Once the Lisp to Java connection is initialized, the
consultation begins. During its reasoning process,
the Lisp AI core directs questions or messages to
the Java bridge:

(a) When the Lisp AI core has a question for the
user, it passes the question along with any addi-
tional arguments as a string (e.g., “location-state”
for determining the state of the infestation) to
the Java bridge through the Lisp bridge which
then prompts the appearance of an input window.
The user’s response is passed back to the Lisp
bridge in the form of a string. The call to the Java
inquiry method using the ABCLjcall func-
tion, with the parameters*java-bridge-object*
and*java-bridge-inquiry-method* initial-
ized above, is coded as follows:

(setq return-string (jcall

java-bridge-inquiry-method

java-bridge-object

question-string))

(b) On the Java bridge side, theinquiry method
signature is:

public String inquiry (String args)

105

inquiry parses theString parameter to deter-
mine the question type along with any associated
trailing parameters, triggers the appearance of the
necessary input panel (which uses the trailing pa-
rameters), and returns the result as aString. A
typical Java input panel appears in Figure 4.

(c) The Lisp bridge parses the returned string into a
list on the way to the Lisp AI core for use in the
analysis of the consultation.

9. Development Issues

By and large, the biggest challenges encountered dur-
ing the development of the new architecture were re-
lated to determining how best to utilize ABCL to make
the bridge modules communicate properly. A summary
of other development issues or choices are provided in
the following subsections.

9.1 Decoupling the View

Although ABCL would support direct calls from the
Lisp side to any variety of methods on the Java side,
the decision was made to simplify the connection so
that the Lisp side was not filled with and dependent
on specific Java method names (other than the main
Java bridge methods). When the Lisp side has a ques-
tion of the user, it is passed to the Java side through
the bridge, then mapped to a specific input screen on
the Java side. In converting to ABCL/Java, very few
lines of code within the CARMA Lisp AI core were
modified other than the former calls to ACL for Win-
dows code which were replaced by questions passed
through the Lisp bridge. If necessary at some later date
the Java GUI could be swapped out for an alternate
GUI environment without requiring changes to the Lisp
code other than the Lisp bridge. This loose coupling
puts CARMA more in line with approaches such as
the Model-View-Controller (MVC) architecture (Reen-
skaug 1979) which advocate separating the view from
the logic.

9.2 Stack Overflow

Once the new architecture was in place, CARMA en-
countered Java stack overflow errors tied to some of its
recursive non-GUI Lisp functions which had worked
perfectly prior to the conversion. CARMA, like many
Lisp programs, makes extensive use of recursion as
its looping mechanism. This failure was initially quite
troubling. It seemed apparent that Java (or perhaps the

ABCL interpreter) was not as adept at handling re-
cursion. We ultimately discovered that only a hand-
ful of CARMA’s Lisp functions triggered the overflow,
and although they did not recurse very deeply in our
opinion, they recursed just enough to cause problems.
Rather than trying to “eliminate” the stack-overflow is-
sue by increasing the Java stack size or further digging
into the ABCL code, the few “erroneous” recursive
Lisp functions were rewritten iteratively usingloop
while until a CARMA advising consultation could run
to completion without errors on an old personal com-
puter with limited memory. It is possible that this issue
could reappear on less powerful computing devices or
environments such as PDA’s.

9.3 ABCL Version

Another slight issue was selecting the version of ABCL
to embed within CARMA. At the time of the initial
integration, ABCL 0.0.8 was used. ABCL 0.0.8 han-
dles Lisp files (including its own Lisp library) as plain
text source files. A more recent version, ABCL 0.0.9,
includes a feature to compile Lisp source to Java byte-
codes. Furthermore, ABCL 0.0.9 itself represents its in-
ternal Lisp library using compiled Lisp files (i.e., Java
bytecodes). A quick check of the two versions shows:

• ABCL 0.0.8: 781 Java class files (1.1MB) and 154
Lisp source files (1.1MB)

• ABCL 0.0.9: 1010 Java class files (2.2MB) and 4495
compiled Lisp files (7.5MB)

Although 0.0.9 includes additional features (which
CARMA doesn’t require) that partly contribute to the
larger size, the bigger issue is that Lisp source code is
generally smaller in size than the equivalent compiled
Lisp→Java files, for example:

• ABCL 0.0.8:typep.lispis 5.3KB

• ABCL 0.0.9: the five compiled files fortypep.lisp
total 11.8KB

Because CARMA is available from the web, distribu-
tion size and associated download times are a key con-
cern. For this reason, CARMA continues to use ABCL
0.0.8 with its Lisp modules in plain text, and represents
its own Lisp core using non-compiled Lisp source in or-
der to minimize the distribution size of CARMA (both
in terms of the embedded ABCL as well its own Lisp
files). Although this choice might require a slightly
longer time for loading the ABCL and CARMA Lisp

106

source into the Lisp interpreter (if Lisp source mod-
ules do indeed take longer to load than compiled Lisp
modules), the time needed for downloading CARMA
is reduced.

The most recent version of ABCL, 0.0.11 has not
been reviewed.

9.4 Speed of ABCL

Although some have found ABCL to be substantially
slower than other Lisp implementations (some have
pointed specifically to interpreted code), its speed has
not presented a noticeable lag for our purposes. Be-
cause CARMA performs its calculations as a consulta-
tion proceeds, rather than all at once after a set of user
inputs, any delay caused by ABCL is mostly impercep-
tible (this feature was particularly advantageous on the
slower Windows environments of the mid-90’s). The
only noticeable delay is the initial load of CARMA’s
Lisp core into ABCL. However, for running a large set
of scripted tests, we might prefer a faster Lisp inter-
preter.

9.5 Differences Between ABCL and other Lisp
Flavors

For the subset of Lisp used within CARMA, syntax
for ABCL was generally consistent with other popu-
lar Lisp implementations unless we dug too deeply. For
example, one portion of CARMA requires a list of slot
names for an object. CLISP provides a CLOS method,
while several other implementations (including ABCL)
do not. A snippet of CARMA’slist-of-slots func-
tion which illustrates this difference is as follows:

(defun list-of-slots (object)

#+clisp (clos::slot-names object)

...

#+cmu (list-of-slots-aux

(clos-mop::class-direct-slots

(class-of object)))

#+armedbear (list-of-slots-aux

(system::class-direct-slots

(class-of object))))

list-of-slots-aux is a helper function (not shown)
that takes a list of slot definitions, and picks off and
returns a list of the slot names.

10. Availability

The most recent version of CARMA, 5.050, with
grasshopper advising capabilities for Colorado, Mon-

tana, Nebraska, New Mexico, North Dakota, Oregon,
South Dakota and Wyoming is available free of charge
for noncommercial purposes and can be downloaded
and installed from http://carma.unk.edu, or run as a
Java Web Start application.

11. Conclusion

CARMA is a long running advising system for western
U.S. grasshopper management whose architecture was
recently upgraded in order that it continue to provide
a valuable public service. The architectural changes to
CARMA demonstrate an approach to using ABCL to
integrate a Lisp application with a Java GUI in a man-
ner which leverages the strengths of the two languages
(i.e., Lisp for elegant reasoning and Java for an appeal-
ing interface). The solution supports two-way commu-
nication between the two components, frees the devel-
oper from licensing costs, and produces an application
which is platform independent and web capable. The
approach should be particularly relevant to those wish-
ing to create highly portable, real-world Lisp applica-
tions which require an interesting user experience.

12. Acknowledgments

CARMA’s development since 2003 was supported
through funds from Cooperative Agreements between
USDA-APHIS-PPQ (Western Region) and the Uni-
versity of Wyoming (grants USDAAPHIS5112, US-
DAAPH44906 and USDAAPH44909GHS).

References

ABCL-web. 2008. ABCL-web (web page).
http://abcl-web.sourceforge.net (Accessed 11 Nov
2008).

Battyani, M. 2008. Fractal Concept: modlisp
home page (web page). http://www.fractal con-
cept.com/asp/modlisp (Accessed 11 Nov 2008).

Branting, L. K., and Hastings, J. D. 1994. An em-
pirical evaluation of model-based case matching and
adaptation. InProceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94) Work-
shop on Case-Based Reasoning (WS–94–01), 72–78.
Menlo Park, CA, USA: AAAI Press.

Branting, L. K.; Hastings, J. D.; and Lockwood, J. A.
1997. Integrating cases and models for prediction in
biological systems.AI Applications11(1):29–48.

107

Branting, L. K. 1998. Integrating cases and models
through approximate-model-based adaptation. InPro-
ceedings of the AAAI 1998 Spring Symposium on Mul-
timodal Reasoning (SS-98-04), 1–5. Menlo Park, CA,
USA: AAAI Press.

Capinera, J. L., and Sechrist, T. S. 1982. Grasshoppers
(Acrididae) of Colorado: Identification, biology, and
management. Technical Report 584S, 1M, Colorado
State University Experiment Station, Fort Collins, CO,
USA.

CLISP. 2008. CLISP - an ANSI Common Lisp Imple-
mentation (web page). http://clisp.cons.org (Accessed
11 Nov 2008).

Franz, Inc. 2008. Franz Inc Customer Applications:
University of Wyoming Applied AI Lab (web page).
http://www.franz.com/success/customerapps/research
/uwyoming.lhtml (Accessed 11 Nov 2008).

GNU. 2008. GCL - GNU Common Lisp (web
page). http://www.gnu.org/software/gcl (Accessed 11
Nov 2008).

Gosling, J.; Joy, B.; Steele, G.; and Bracha, G. 2000.
The Java Language Specification. Boston, MA, USA:
Addison-Wesley, 2nd edition.

Graham, P. 1993.On Lisp: Advanced Techniques for
Common Lisp. Upper Saddle River, NJ, USA: Prentice
Hall.

Graham, P. 1996.ANSI Common Lisp. Upper Saddle
River, NJ, USA: Prentice Hall.

Graves, P. 2008. Armed Bear Common Lisp (web
page). http://common-lisp.net/project/armedbear (Ac-
cessed 11 Nov 2008).

Hastings, J. D.; Branting, L. K.; and Lockwood, J. A.
1995. Case adaptation using an incomplete causal
model. InProceedings of the First International Con-
ference on Case-Based Reasoning (ICCBR-95) Lec-
ture Notes in Artificial Intelligence 1010, 181–192.
New York, NY, USA: Springer.

Hastings, J.; Branting, K.; and Lockwood, J. 1996. A
multi-paradigm reasoning system for rangeland man-
agement. Computers and Electronics in Agriculture
16(1):47–67.

Hastings, J.; Branting, K.; and Lockwood, J. 2002.
CARMA: A case-based rangeland management ad-
viser. AI Magazine23(2):49–62.

Hastings, J. D.; Latchininsky, A. V.; and Schell, S. P.
2009. Sustainability of grasshopper management and
support through CARMA. InProceedings of the 42nd
Hawaii International Conference on System Sciences
(HICSS-42), 10 pages, CDROM. Los Alamitos, CA,
USA: IEEE Computer Society.

Latchininsky, A. V.; Hastings, J. D.; and Schell, S. S.
2007. Good CARMA for the high plains. InProceed-
ings of the 2007 Americas’ Conference on Information
Systems (AMCIS 2007), 9 pages, CDROM. Associa-
tion for Information Systems.

Lockwood, J. A., and Lockwood, D. 1991. Range-
land grasshopper (Orthoptera: Acrididae) population
dynamics: insights from catastrophe theory.Entomo-
logical Society of America20(4):970–980.

Lockwood, J. A., and Schell, S. P. 1997. Decreasing
economic and environmental costs through reduced
area and agent insecticide treatments (RAATs) for the
control of rangeland grasshoppers: Empirical results
and their implications for pest management.Journal
of Orthoptera Research6:19–32.

Lowdermilk, J. 2002. JACOL - Java and Common
Lisp (web page). http://jacol.sourceforge.net (Ac-
cessed 11 Nov 2008).

Reenskaug, T. M. H. 1979. Trygve/MVC (web page).
http://heim.ifi.uio.no/ trygver/themes/mvc/mvc-index.
html (Accessed 11 Nov 2008).

Steele, G. L., and Gabriel, R. P. 1993. The evo-
lution of Lisp. In Second ACM SIGPLAN History
of Programming Languages Conference (HOPL-II),
231–270. New York, NY, USA: ACM.

Steele, G. L. 1984.Common Lisp: The Language.
Newton, MA, USA: Digital Press, 1st edition.

Steele, G. L. 1990.Common Lisp: The Language.
Newton, MA, USA: Digital Press, 2nd edition.

Witten, I. H., and Frank, E. 2005.Data Mining:
Practical Machine Learning Tools and Techniques.
San Francisco, CA, USA: Morgan Kaufmann, 2nd
edition.

Zimmerman, K. M.; Lockwood, J. A.; and Latchinin-
sky, A. V. 2004. A spatial, markovian model of
rangeland grasshopper (Orthoptera: Acrididae) pop-
ulation dynamics: Do long-term benefits justify sup-
pression of infestations?Environmental Entomology
33(2):257–266.

108

