On the Effectiveness of Automatic Case Elicitation in a
More Complex Domain

Siva N. Kommuri, Jay H. Powell and John D. Hastings

University of Nebraska at Kearney
Dept. of Computer Science & Information Systems
Kearney NE 68849, U.S.A.
sivakom@gmail.com, hueljh@hotmail.com, hastingsjd @euhk

Abstract. Automatic case elicitation (ACE) is a learning techniquewihich
a case-based reasoning system acquires knowledge auwdaliyafiom scratch
through repeated real-time trial and error interactiorhwis environment with-
out dependence on pre-coded domain knowledge. ACE refiseaeralternative
to manually constructed case bases and domain specificiqeelsn and is gen-
erally applicable to any domain for which knowledge can b&aiied from a
series of observations of an environment (e.g., checkersassively multiplayer
games). A priority is placed on maintaining the flexibilitggessary to learn new
domains with only negligible manual configuration. We fouhating testing that
the current approach to ACE with a reliance on experiencesaptbration, while
quite capable in the domain of checkers, did not perform aaedy in the ex-
ponentially more complex domain of chess. Our results ssigifpat experience
alone, without the ability to adapt for case differencesMeetn new and prior
cases, is insufficient in more complex domains.

1 Introduction

Automatic case elicitation (ACE) [1, 2] is a learning tedjum in which a case-based
reasoning (CBR) system acquires knowledge automatidaibugh repeated real-time
trial and error interaction with its environment. ACE repeats an alternative to man-
ually constructed case bases and domain specific technifnesvliedge is acquired
from scratch through an ACE system’s interaction with ity¥immment without de-
pendence on pre-coded domain knowledge (e.qg. rules or)c#¢eB does not utilize
separate training and testing phases, but instead coliyimproves its performance
through repeated exposure to its environment.

ACE is generally applicable to any domain for which knowled;n be obtained
from a series of observations of an environment. We expéstapproach to be just
as easily applied to checkers as to massively multiplayerega In order to remain
relatively domain independent, a priority is placed on rneiring the flexibility and
generality necessary to learn new domains with only a mihenaount (e.g., a few
minutes) of manual configuration, and not by training ACE opraselected set of
“good” information or by guiding it through the learning mess. Peak performance
in each individual test domain is the eventual but not imragdgoal. Intermediate
performance is used to guide our research and suggest aréagfovementin ACE’s

learning ability, but not to point out areas of domain spedifiowledge which should
be explicitly encoded. As such, our philosophy contrasth vésearch which is focused
on precisely “solving” a test domain through domain spe¢dahniques such as search.

The power and flexibility of automatic case elicitation igrdstrated by Powell
et al. [2] in which the results suggest that in the domain afoblers, experience can
substitute for the inclusion of pre-coded model-based kedge, and that exploration
of a problem domain is crucial to the performance of ACE. Tpéper extends our
previous work by applying ACE to chess in order to determiseeifectiveness in a
more complex domain and to suggest areas for improvementé3ults suggest that
experience alone, without the ability to adapt for caseed#fices between new and
previous cases, is insufficient in the domain of chess.

We briefly detail automatic case elicitation in Section 2d &ollow in Section 3
with test results that demonstrate the shortcomings of ACtEe domain of chess. We
close in Section 4 with the introduction of a proposed plagripproach to ACE.

2 Predictive Approach to Automatic Case Elicitation

To date, our work on automatic case elicitation has vieweddkk of real-time interac-
tion with an environment (made up of a sequence of discretervhtions)s,...0,,) as

a predictive task in which cases identical to the curreneoled situation@;) are used
to predict the action most likely to lead to the satisfactidma final goal (at a final ob-
servationO,,). The effectiveness of each acquired case is evaluated agimobablistic
reinforcement learning approach which provides a meanarf@dxCE system to explore
its environment as well as learn and improve from its expa@s. Cases contain only
the directly observed situation (i.e., the different typébjects and their locations
in the environment), a suggested action, and a continuefiged global rating of the
action for all of the uses of the action in the situation.

Cases in ACE are abstract only in the sense that each coatgiobal rating of all
uses of an action in a situation, rather than the outcome péeific use of the action
for a specific instance of the situation. These cases diff@ifecantly from the highly
compiled cases described by Sinclair [3] which were notledifrom scratch, but were
instead derived from a set of grandmaster games. In contin@sbnly cases learned by
ACE are those originating from actual interaction with tmieonment, not from a set
of select interactions manually chosen with an understaafi the domain. For a more
detailed description of the predictive ACE algorithm andscdssion of related work,
please see Powell et al. [2].

3 Preliminary Application of Automatic Case Elicitation to Chess

The primary purpose of the research described in this pagerapply automatic case
elicitation to the game of chess in order to determine itsaifeness in a domain more
complex than checkers and to suggest directions for furésgarch. ACE is evaluated
through CHEBR [2], a system in which CBR agents utilize awtioncase elicitation
to learn and test their expertise in a problem domain usiegptieviously mentioned
predictive ACE approach. CHEBR was formerly tested in thedim of checkers. Due

File Mode Action Step Options Help

m Black: 9:43

5. Guz @ mazs 0 | HERRE]
|

o i
) =2 (&

|

4

4

4

4 4
£ Wy A
SN Bl

Fig. 1. Screenshot of a Chess Match Between Two CHEBR-chess Players

to the flexibility of ACE, CHEBR was easily applied to the ddmaf chess (we will
call this application CHEBR-chess). The performance of BREchess was tested in
repeated sessions which pitted CHEBR-chess systems A arghiBsa one another
for 335 games (approximately six hours of game time on an AMBIghn XP1800+
processor). Both systems began play with empty knowledgeh& he systems played
each other through a modified version of XBoard (a graphisal interface for chess)
which could acknowledge the validity of machine moves, andrfaced with XBoard
using a modified version of code distributed with TIELT [4ig&re 1 shows an XBoard
screenshot of two CHEBR-chess players in competition dfi@ck mated white. In
keeping with the ACE philosophy of not pre-coding domain\ktexlge, the CHEBR-
chess players did not have knowledge about what constéuwatd action, but instead
depended on XBoard to validate their moves.

Figure 2 displays the number of moves made per game by eadire(EHHEBR-
chess systems during the 335 game competition. The resalshawn using a spline
interpolation of the data. Similar results were observetepeated tests with a slight
variability caused by the use of random move generationicddhat the number of
moves was often quite high because the players routinelyeplgames of attrition
in which they moved until one player had lost all pieces exdtlep king. Notice also

! Depending on XBoard to validate moves is not an ideal appreachess rules are not easily
configurable or even fully implemented in XBoard. In the figtuwe expect that our approach
will depend on game rules implemented in TIELT.

4751
4501 ﬂ‘
425 “
4001
3751 I ‘
3501 “\‘ “
3251 “
300 |
2751 ‘\ “
2501 \ | | |
=] I
2001 ‘ \ | ‘ \ it
1751 | r“.“ \‘ eﬂ\‘ \ ‘ ‘
LELO R O OO A T W
1254 U | \ A\ MY ‘ |
| { |
0} | K w [l | \‘ ‘U‘u‘ ||
751 I | \ |
501 A \
25 \ \ S \ \ \ \
0 50 100 150 200 250 300 350
Game Number

Number of Moves Per Game

Fig. 2. Number of Moves Per Game for CHEBR-chess A vs. CHEBR-chess B

that the number of moves did not decrease over time, indigdkiat the approach had
difficulty learning within the alloted number of games. Itpaars that the spikes in
the number of moves per game decreased after approximat&lygdmes. However,
given the chaotic nature of the curve, one would suspectticansiderable number of
additional training would be necessary for the system téoper adequately, if at all.

Figure 3 illustrates the percentage of games ending in chatk over the same
335 games. The frequency of checkmates peaked at 22% aftem3&s, then dropped
to 14% before starting a slow climb. Note that feedback toplagers indicating the
success of their interaction did not differ for games endimngesignation by one player
versus those games ending in checkmate, and as such, plarers no way motivated
to find shorter solutions.

As a potential solution to the many long games, we placed tioies on the games
to “force” the players to play for shorter games (hopefulheckmate). We attempted
a variety of limits including 50, 100 and 150 moves. Once tlowelimit was reached
within a game, the game was ended and the players were infoofibe failure. We
tried two alternate approaches to having players handle failares by either:

1. simply disregarding the game and not modifying the ratioithe applied cases, or
2. marking the game as a failure and lowering the ratings ofi @@plied case.

Neither of these solutions proved satisfactory. Cleadgpring long games by not
committing them to memory was ineffective in shortening garas players had no in-

24
22 i
2
g 20 1
< | A\
Q \ N\ aa
= 18 i VIV VAR T S~ o
S W\ AT A
= | / N
o ‘ ALY N
£ | SAVRR RN
= 14
&) \
g 12
£ |
5 |
AR
e |
o {
g8
8
g 0 ‘
o
~ |
4
\
2 !
\
0 ! " " " " " " |
0 50 100 150 200 250 300 350
Number of Games Played

Fig. 3. Percentage of Games Ending in Checkmate for CHEBR-chess @HEBR-chess B

centive to play for a short match or any remembered expegiabout what constituted
a long game. Marking long games as a failure was also inéféeebecause it dropped
the ratings of frequently used early moves that had littlatienship with the length

of the game. The ratings’ decrease for early moves was signififor the 50 game
threshold and caused the players to effectively quit usingeé moves. It is unclear how
tightly the ratings of early actions should be related tdufas late in the game; it is
possible that either early actions play a big part in leadigplayer down a path for
success or failure (like an early fork in the road), or that ¢fffect of actions on the final
outcome is inversely proportional to the distance from thalfstate (and that minor
“mistakes” made early in the action sequence can be codéater).

Although the case representation (i.e., observationpactind global success rat-
ing) used in ACE proved relatively effective in the world dfeckers, initial applica-
tions to chess illustrated some weaknesses. The biggdsepr@ppears to be that the
abstract nature (with the global rating) of the cases doésumaport the type of intro-
spection which could support the creation of case adaptatiles. Without adaptation
(and the ability to retrieve similar but different casesg @hose to retrieve only exact
matches, which required our system to explore and encoariteger variety of situ-
ations in order to succeed. This approach applied to chetsrped inadequately as
the complexity of chessl(*3 [5] board positions for chess comparedi@’® [6] for
checkers) makes it impossible to explore a sufficient portibthe state space (espe-
cially board states later in the game which are encountefegtjuently). Even if similar

matching cases were allowed (without adaptation), casestared without regard to
the context of their use, and would likely be applied incotiye

4 Future Work

Given the weaknesses of the predictive approach to ACE wppliea chess, we plan
to investigate a case-based planning (CBP) approach. CB®meof the earliest CBR
research areas [7, 8], and has a rich history [9] with apf)ica to a variety of prob-
lem domains. CBP is a process whereby a system stores praiolemons (as plans)
in memory, and constructs new plans in order to achieve omeave goals for a new
situation by retrieving and adapting similar, previousiynrembered plans. The focus
in CBP is retrieval and adaptation, rather than the refingroka plan from scratch.
Viewed simply, plans (i.e., cases) are a sequence of acibich, when applied to a
situation, affect some outcome (the goal). New plans rasuither success or fail-
ure. Failed plans can be contributed to the case base “asrisgn be repaired given
the additional (external or future) information necesdargetermine the cause of the
failure.

In the CBP approach to ACE, knowledge in the form of casesagglin be acquired
from scratch through real-time interaction with the systesnvironment. However,
cases will not abstractly represent the history of an adtiottie context of a specific
observation, but will rather represent a complete problelwiisg episode as:

1. achronological sequence of discrete observations (,0,,) of the dynamic envi-
ronment from the initial observatiort)) to the final observation(,,) with each
observation connected by any valid action taken by the sysaed

2. the success of the plan.

As in the past, during interaction with its dynamic envircemty the ACE system
will constantly monitor the environment for changes. Whéarges occur, ACE will
attempt to interact with the environment by retrieving a sesubcases sufficiently
similar to the current environment.

We plan to add adaptation rules [10,11] to ACE in an attemtdmount for any
differences between the current environment and thoseeiméitching subcases. These
adaptation rules should allow the ACE approach to more aateguhandle novel situ-
ations.

ACE will iterate through each of the similar subcases, aipglyhe adapted action
associated with a subcase at random with the probabilitglettion related to a rating
of the potential effectiveness of the subcase (as detedbiypnéhe history of the subcase,
the distance of the subcase from the end of the interactimhttee past success of the
adaptation rules). As in the past, ACE will ensure that thebpbility of selecting a
previous action will be less than0. This mechanism allows for the possibility of not
selecting a subcase in order to encourage occasional exploof the domain. When
a subcase action is not selected, a new action will be caretfu

At the end of each interaction (e.g., a game in the domain e$sh the ACE plan-
ning approach will contribute the new case to memory andyaedts cases in order to
automatically tune and construct adaptation rules. We bagen implementating this
approach and hope to apply it to chess in the near future.

5 Conclusion

Because automatic case elicitation (ACE) can flexibly asgknowledge automatically
without precoded domain knowledge, it was easily appliedness after having been
initially applied to checkers. We found that the currentmagh to ACE with its re-
liance on experience and exploration, while quite capabliné domain of checkers,
did not perform adequately in the exponentially more compierld of chess. Our
results suggest that experience alone, without the abdigdapt for case differences
between new and prior cases, is insufficient in more compterains. We also feel
that our abstract case structure might limit the flexibiliigeded to succeed in highly
complex domains. As an alternative, we propose a plannipgpagh to automatic case
elicitation, an approach that will more easily support theation of adaptation rules
and produce better performance in complex environments.

6 Acknowledgements

This research was supported, in part, by a University Rekeand Creative Activity
grant through the Research Services Council at the UntyavENebraska at Kearney.

References

1. Powell, J.H., Hauff, B.M., Hastings, J.D.: Utilizing eabased reasoning and automatic case
elicitation to develop a self-taught knowledgeable agerftu, D., Orkin, J., eds.: Challenges
in Game Artificial Intelligence: Papers from the AAAIl Workgh (Technical Report WS-04-
04), AAAI Press (2004) 77-81

2. Powell, J.H., Hauff, B.M., Hastings, J.D.: Evaluating #ffectiveness of exploration and
accumulated experience in automatic case elicitation.Ptoceedings of the Sixth Inter-
national Conference on Case-Based Reasoning (ICCBR-88)| 2080, Chicago, lllinois,
Springer (2005)

3. Sinclair, D.: Using example-based reasoning for seleatiove generation in two player
adversarial games. In: Proceedings of the Fourth EuropezkdMop on Case-Based Rea-
soning (EWCBR-98), LNAI 1488, Springer-Verlag (1998) 1285

4. Aha, D.W., Molineaux, M.: Integrating learning in inteteve gaming simulators. In Fu, D.,
Orkin, J., eds.: Challenges in Game Atrtificial IntelligenBapers from the AAAI Workshop
(Technical Report WS-04-04), AAAI Press (2004) 49-53

5. Shannon, C.E.: Programming a computer for playing chédslosophical Magazindl
(1950) 256-275

6. Lake, R., Schaeffer, J., Lu, P.: Solving large retrograiysis problems using a network of
workstations. In: Advances in Computer Chess VII, Maaktritletherlands (1994) 135-162

7. Hammond, K.J.: Case-based planning: Viewing plannirggrasmory task. Academic Press,
Boston (1989)

8. Hammond, K.J.: Explaining and repairing plans that faitificial Intelligence 45 (1990)
173-228

9. Spalazzi, L.: A survey on case-based planning. Artificiélligence Reviewl6 (2001)
3-36

10. Hanney, K.: Learning adaptation rules from cases. Madteesis, Computer Science De-
partment, Trinity College Dublin (1996)

11. Hanney, K., Keane, M.T.: The adaptation knowledge &wtitk: How to ease it by learning
from cases. In Leake, D., Plaza, E., eds.: Proceedings &dbend International Conference
on Case Based Reasoning (ICCBR-95), LNAI 1266, Springday€d997) 359-370

