
On the Effectiveness of Automatic Case Elicitation in a
More Complex Domain

Siva N. Kommuri, Jay H. Powell and John D. Hastings

University of Nebraska at Kearney
Dept. of Computer Science & Information Systems

Kearney NE 68849, U.S.A.
sivakom@gmail.com, hueljh@hotmail.com, hastingsjd@unk.edu

Abstract. Automatic case elicitation (ACE) is a learning technique inwhich
a case-based reasoning system acquires knowledge automatically from scratch
through repeated real-time trial and error interaction with its environment with-
out dependence on pre-coded domain knowledge. ACE represents an alternative
to manually constructed case bases and domain specific techniques, and is gen-
erally applicable to any domain for which knowledge can be obtained from a
series of observations of an environment (e.g., checkers ormassively multiplayer
games). A priority is placed on maintaining the flexibility necessary to learn new
domains with only negligible manual configuration. We foundduring testing that
the current approach to ACE with a reliance on experience andexploration, while
quite capable in the domain of checkers, did not perform adequately in the ex-
ponentially more complex domain of chess. Our results suggest that experience
alone, without the ability to adapt for case differences between new and prior
cases, is insufficient in more complex domains.

1 Introduction

Automatic case elicitation (ACE) [1, 2] is a learning technique in which a case-based
reasoning (CBR) system acquires knowledge automatically through repeated real-time
trial and error interaction with its environment. ACE represents an alternative to man-
ually constructed case bases and domain specific techniques. Knowledge is acquired
from scratch through an ACE system’s interaction with its environment without de-
pendence on pre-coded domain knowledge (e.g. rules or cases). ACE does not utilize
separate training and testing phases, but instead continually improves its performance
through repeated exposure to its environment.

ACE is generally applicable to any domain for which knowledge can be obtained
from a series of observations of an environment. We expect this approach to be just
as easily applied to checkers as to massively multiplayer games. In order to remain
relatively domain independent, a priority is placed on maintaining the flexibility and
generality necessary to learn new domains with only a minimal amount (e.g., a few
minutes) of manual configuration, and not by training ACE on apreselected set of
“good” information or by guiding it through the learning process. Peak performance
in each individual test domain is the eventual but not immediate goal. Intermediate
performance is used to guide our research and suggest areas for improvement in ACE’s



learning ability, but not to point out areas of domain specific knowledge which should
be explicitly encoded. As such, our philosophy contrasts with research which is focused
on precisely “solving” a test domain through domain specifictechniques such as search.

The power and flexibility of automatic case elicitation is demonstrated by Powell
et al. [2] in which the results suggest that in the domain of checkers, experience can
substitute for the inclusion of pre-coded model-based knowledge, and that exploration
of a problem domain is crucial to the performance of ACE. Thispaper extends our
previous work by applying ACE to chess in order to determine its effectiveness in a
more complex domain and to suggest areas for improvement. Our results suggest that
experience alone, without the ability to adapt for case differences between new and
previous cases, is insufficient in the domain of chess.

We briefly detail automatic case elicitation in Section 2, and follow in Section 3
with test results that demonstrate the shortcomings of ACE in the domain of chess. We
close in Section 4 with the introduction of a proposed planning approach to ACE.

2 Predictive Approach to Automatic Case Elicitation

To date, our work on automatic case elicitation has viewed the task of real-time interac-
tion with an environment (made up of a sequence of discrete observationsO1,...,On) as
a predictive task in which cases identical to the current observed situation (Oi) are used
to predict the action most likely to lead to the satisfactionof a final goal (at a final ob-
servationOn). The effectiveness of each acquired case is evaluated using a probablistic
reinforcement learning approach which provides a means foran ACE system to explore
its environment as well as learn and improve from its experiences. Cases contain only
the directly observed situation (i.e., the different typesof objects and their locations
in the environment), a suggested action, and a continually refined global rating of the
action for all of the uses of the action in the situation.

Cases in ACE are abstract only in the sense that each containsa global rating of all
uses of an action in a situation, rather than the outcome of a specific use of the action
for a specific instance of the situation. These cases differ significantly from the highly
compiled cases described by Sinclair [3] which were not learned from scratch, but were
instead derived from a set of grandmaster games. In contrast, the only cases learned by
ACE are those originating from actual interaction with the environment, not from a set
of select interactions manually chosen with an understanding of the domain. For a more
detailed description of the predictive ACE algorithm and a discussion of related work,
please see Powell et al. [2].

3 Preliminary Application of Automatic Case Elicitation to Chess

The primary purpose of the research described in this paper is to apply automatic case
elicitation to the game of chess in order to determine its effectiveness in a domain more
complex than checkers and to suggest directions for furtherresearch. ACE is evaluated
through CHEBR [2], a system in which CBR agents utilize automatic case elicitation
to learn and test their expertise in a problem domain using the previously mentioned
predictive ACE approach. CHEBR was formerly tested in the domain of checkers. Due



Fig. 1. Screenshot of a Chess Match Between Two CHEBR-chess Players

to the flexibility of ACE, CHEBR was easily applied to the domain of chess (we will
call this application CHEBR-chess). The performance of CHEBR-chess was tested in
repeated sessions which pitted CHEBR-chess systems A and B against one another
for 335 games (approximately six hours of game time on an AMD Athlon XP1800+
processor). Both systems began play with empty knowledge bases. The systems played
each other through a modified version of XBoard (a graphical user interface for chess)
which could acknowledge the validity of machine moves, and interfaced with XBoard
using a modified version of code distributed with TIELT [4]. Figure 1 shows an XBoard
screenshot of two CHEBR-chess players in competition afterblack mated white. In
keeping with the ACE philosophy of not pre-coding domain knowledge, the CHEBR-
chess players did not have knowledge about what constitutesa valid action, but instead
depended on XBoard to validate their moves.1

Figure 2 displays the number of moves made per game by each of the CHEBR-
chess systems during the 335 game competition. The results are shown using a spline
interpolation of the data. Similar results were observed inrepeated tests with a slight
variability caused by the use of random move generation. Notice that the number of
moves was often quite high because the players routinely played games of attrition
in which they moved until one player had lost all pieces except the king. Notice also

1 Depending on XBoard to validate moves is not an ideal approach as chess rules are not easily
configurable or even fully implemented in XBoard. In the future, we expect that our approach
will depend on game rules implemented in TIELT.



0 50 100 150 200 250 300 350
25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

Game Number

N
u

m
b

er
 o

f 
M

o
v
es

 P
er

 G
am

e

Fig. 2. Number of Moves Per Game for CHEBR-chess A vs. CHEBR-chess B

that the number of moves did not decrease over time, indicating that the approach had
difficulty learning within the alloted number of games. It appears that the spikes in
the number of moves per game decreased after approximately 175 games. However,
given the chaotic nature of the curve, one would suspect thata considerable number of
additional training would be necessary for the system to perform adequately, if at all.

Figure 3 illustrates the percentage of games ending in checkmate over the same
335 games. The frequency of checkmates peaked at 22% after 37games, then dropped
to 14% before starting a slow climb. Note that feedback to theplayers indicating the
success of their interaction did not differ for games endingin resignation by one player
versus those games ending in checkmate, and as such, playerswere in no way motivated
to find shorter solutions.

As a potential solution to the many long games, we placed movelimits on the games
to “force” the players to play for shorter games (hopefully checkmate). We attempted
a variety of limits including 50, 100 and 150 moves. Once the move limit was reached
within a game, the game was ended and the players were informed of the failure. We
tried two alternate approaches to having players handle such failures by either:

1. simply disregarding the game and not modifying the ratings of the applied cases, or
2. marking the game as a failure and lowering the ratings of each applied case.

Neither of these solutions proved satisfactory. Clearly, ignoring long games by not
committing them to memory was ineffective in shortening games as players had no in-



0 50 100 150 200 250 300 350

0

2

4

6

8

10

12

14

16

18

20

22

24

Number of Games Played

P
er

ce
n

ta
g
e 

o
f 

G
am

es
 E

n
d

in
g

 i
n
 C

h
ec

k
m

at
e

Fig. 3. Percentage of Games Ending in Checkmate for CHEBR-chess A vs. CHEBR-chess B

centive to play for a short match or any remembered experience about what constituted
a long game. Marking long games as a failure was also ineffective because it dropped
the ratings of frequently used early moves that had little relationship with the length
of the game. The ratings’ decrease for early moves was significant for the 50 game
threshold and caused the players to effectively quit using those moves. It is unclear how
tightly the ratings of early actions should be related to failures late in the game; it is
possible that either early actions play a big part in leadingthe player down a path for
success or failure (like an early fork in the road), or that the effect of actions on the final
outcome is inversely proportional to the distance from the final state (and that minor
“mistakes” made early in the action sequence can be corrected later).

Although the case representation (i.e., observation, action, and global success rat-
ing) used in ACE proved relatively effective in the world of checkers, initial applica-
tions to chess illustrated some weaknesses. The biggest problem appears to be that the
abstract nature (with the global rating) of the cases does not support the type of intro-
spection which could support the creation of case adaptation rules. Without adaptation
(and the ability to retrieve similar but different cases), we chose to retrieve only exact
matches, which required our system to explore and encountera larger variety of situ-
ations in order to succeed. This approach applied to chess performed inadequately as
the complexity of chess (10

43 [5] board positions for chess compared to10
20 [6] for

checkers) makes it impossible to explore a sufficient portion of the state space (espe-
cially board states later in the game which are encountered infrequently). Even if similar



matching cases were allowed (without adaptation), cases are stored without regard to
the context of their use, and would likely be applied incorrectly.

4 Future Work

Given the weaknesses of the predictive approach to ACE when applied chess, we plan
to investigate a case-based planning (CBP) approach. CBP was one of the earliest CBR
research areas [7, 8], and has a rich history [9] with applications to a variety of prob-
lem domains. CBP is a process whereby a system stores problemsolutions (as plans)
in memory, and constructs new plans in order to achieve one ormore goals for a new
situation by retrieving and adapting similar, previously remembered plans. The focus
in CBP is retrieval and adaptation, rather than the refinement of a plan from scratch.
Viewed simply, plans (i.e., cases) are a sequence of actionswhich, when applied to a
situation, affect some outcome (the goal). New plans resultin either success or fail-
ure. Failed plans can be contributed to the case base “as is”,or can be repaired given
the additional (external or future) information necessaryto determine the cause of the
failure.

In the CBP approach to ACE, knowledge in the form of cases willagain be acquired
from scratch through real-time interaction with the system’s environment. However,
cases will not abstractly represent the history of an actionin the context of a specific
observation, but will rather represent a complete problem solving episode as:

1. a chronological sequence of discrete observations (O1,...,On) of the dynamic envi-
ronment from the initial observation (O1) to the final observation (On) with each
observation connected by any valid action taken by the system, and

2. the success of the plan.

As in the past, during interaction with its dynamic environment, the ACE system
will constantly monitor the environment for changes. When changes occur, ACE will
attempt to interact with the environment by retrieving a setof subcases sufficiently
similar to the current environment.

We plan to add adaptation rules [10, 11] to ACE in an attempt toaccount for any
differences between the current environment and those in the matching subcases. These
adaptation rules should allow the ACE approach to more adequately handle novel situ-
ations.

ACE will iterate through each of the similar subcases, applying the adapted action
associated with a subcase at random with the probability of selection related to a rating
of the potential effectiveness of the subcase (as determined by the history of the subcase,
the distance of the subcase from the end of the interaction, and the past success of the
adaptation rules). As in the past, ACE will ensure that the probability of selecting a
previous action will be less than1.0. This mechanism allows for the possibility of not
selecting a subcase in order to encourage occasional exploration of the domain. When
a subcase action is not selected, a new action will be constructed.

At the end of each interaction (e.g., a game in the domain of chess), the ACE plan-
ning approach will contribute the new case to memory and analyze its cases in order to
automatically tune and construct adaptation rules. We havebegun implementating this
approach and hope to apply it to chess in the near future.



5 Conclusion

Because automatic case elicitation (ACE) can flexibly acquire knowledge automatically
without precoded domain knowledge, it was easily applied tochess after having been
initially applied to checkers. We found that the current approach to ACE with its re-
liance on experience and exploration, while quite capable in the domain of checkers,
did not perform adequately in the exponentially more complex world of chess. Our
results suggest that experience alone, without the abilityto adapt for case differences
between new and prior cases, is insufficient in more complex domains. We also feel
that our abstract case structure might limit the flexibilityneeded to succeed in highly
complex domains. As an alternative, we propose a planning approach to automatic case
elicitation, an approach that will more easily support the creation of adaptation rules
and produce better performance in complex environments.

6 Acknowledgements

This research was supported, in part, by a University Research and Creative Activity
grant through the Research Services Council at the University of Nebraska at Kearney.

References

1. Powell, J.H., Hauff, B.M., Hastings, J.D.: Utilizing case-based reasoning and automatic case
elicitation to develop a self-taught knowledgeable agent.In Fu, D., Orkin, J., eds.: Challenges
in Game Artificial Intelligence: Papers from the AAAI Workshop (Technical Report WS-04-
04), AAAI Press (2004) 77–81

2. Powell, J.H., Hauff, B.M., Hastings, J.D.: Evaluating the effectiveness of exploration and
accumulated experience in automatic case elicitation. In:Proceedings of the Sixth Inter-
national Conference on Case-Based Reasoning (ICCBR-05), LNAI 2080, Chicago, Illinois,
Springer (2005)

3. Sinclair, D.: Using example-based reasoning for selective move generation in two player
adversarial games. In: Proceedings of the Fourth European Workshop on Case-Based Rea-
soning (EWCBR-98), LNAI 1488, Springer-Verlag (1998) 126–135

4. Aha, D.W., Molineaux, M.: Integrating learning in interactive gaming simulators. In Fu, D.,
Orkin, J., eds.: Challenges in Game Artificial Intelligence: Papers from the AAAI Workshop
(Technical Report WS-04-04), AAAI Press (2004) 49–53

5. Shannon, C.E.: Programming a computer for playing chess.Philosophical Magazine41
(1950) 256–275

6. Lake, R., Schaeffer, J., Lu, P.: Solving large retrogradeanalysis problems using a network of
workstations. In: Advances in Computer Chess VII, Maastricht, Netherlands (1994) 135–162

7. Hammond, K.J.: Case-based planning: Viewing planning asa memory task. Academic Press,
Boston (1989)

8. Hammond, K.J.: Explaining and repairing plans that fail.Artificial Intelligence45 (1990)
173–228

9. Spalazzi, L.: A survey on case-based planning. ArtificialIntelligence Review16 (2001)
3–36

10. Hanney, K.: Learning adaptation rules from cases. Master’s thesis, Computer Science De-
partment, Trinity College Dublin (1996)



11. Hanney, K., Keane, M.T.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In Leake, D., Plaza, E., eds.: Proceedings of theSecond International Conference
on Case Based Reasoning (ICCBR-95), LNAI 1266, Springer Verlag (1997) 359–370


