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Abstract: CARMA is an advisory system for rangeland
grasshopper infestations that demonstrates how AI tech-
nology can deliver expert advice to compensate for cut-
backs in public services. CARMA uses two knowledge
sources for the key task of predicting forage consumption by
grasshoppers: cases obtained by asking a group of experts to
solve representative hypothetical problems; and a numerical
model of rangeland ecosystems. These knowledge sources
are integrated through the technique ofmodel-based adap-
tation, in which CBR is used to find an approximate solu-
tion and the model is used to adapt this approximate solu-
tion into a more precise solution. CARMA has been used in
Wyoming counties since 1996. The combination of a simple
interface, flexible control strategy, and integration of multi-
ple knowledge sources makes CARMA accessible to inex-
perienced users and capable of producing advice compara-
ble to that produced by human experts. Moreover, because
CARMA embodies diverse forms of expertise, it has been
used in ways that its developers did not anticipate, including
pest management research, development of industry strate-
gies, and in state and federal pest management policy deci-
sions.

Introduction
Grasshopper outbreaks cause significant economic damage
to livestock producers worldwide. Grasshoppers annually
consume 21–23% of rangeland forage in the western United
States, causing an estimated loss of $400 million (Hewitt
and Onsager, 1983). Estimates of the value of forage lost
to grasshoppers in the 17 western states in 1998 range
from $408 million (assuming replacement by leasing land)
to $1.02 billion (assuming replacement by hay) (Nelson,
1999). Similar losses were sustained in 1999. Various chem-
ical and biological pesticides are available for treatmentof
grasshopper infestations, but the cost of using these agents
often outweighs the value of the forage saved by their appli-
cation.

Before 1996, the USDA paid the entire cost of treatment
on federal land, one-half the cost on state land, and one-
third of the cost on private land. In addition, the USDA
provided intensive surveys and pest-management advice to

Copyright c
 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ranchers about treatment selection. Subsequently, however,
the USDA stopped providing these subsidies (except for in-
festations on federal rangelands that represent an immediate
threat to adjacent crops) and the level of survey and logisti-
cal support was substantially decreased. CARMA was de-
veloped to help compensate for the decreased availability of
federal assistance to ranchers.

Task Description
CARMA’s task is to help ranchers determine the most cost-
effective responses to rangeland grasshopper infestations
within user-defined environmental constraints. CARMA’s
performance objective is to emulate as closely as possible
the performance of pest management experts. The shortage
of human experts makes it important for CARMA to be suf-
ficiently intuitive that it can be easily used and understood
by ranchers, range managers (who often lack pest manage-
ment expertise), and pest managers (who may lack expe-
rience with rangeland grasshoppers). Determining the most
cost-effective response to a grasshopper infestation requires,
at a minimum, estimating (1) the value of the forage that is
likely to be consumed by grasshoppers if no action is taken,
(2) the value of the portion of this forage that would be saved
in current and future years under each treatment option, and
(3) the cost of each option.

To explicate the process whereby experts make these esti-
mations, we performed a protocol analysis of “solve-aloud”
problem solving by several experts in rangeland grasshopper
management at the University of Wyoming (Hastings et al.,
1996). The protocol analysis suggested that experts predict
the proportion of available forage that will be consumed by
grasshoppers by comparing the current situation to prototyp-
ical cases.

An example of a prototypical case is a moderate density
of emerging grasshoppers in a cool, wet spring. In this situa-
tion, only a low proportion of forage is typically consumed,
because wet conditions both increase forage growth and pro-
mote growth of fungal pathogens that decrease grasshopper
populations, and cool conditions tend to prolong the early
developmental phases during which grasshoppers are most
susceptible to pathogens and other mortality factors. In
predicting forage consumption by comparing new cases to
prototypical cases, such as the cool, wet spring prototype,
experts appear to be using a form of case-based reasoning



(CBR) (Aamodt and Plaza, 1994).
If a particular new case differs in some ways from the

most similar prototypical case, the expert can perform causal
reasoning to adapt the prediction associated with the case to
account for the differences. For example, if the population
density of emerging grasshoppers in a cool, wet spring is
high (rather than moderate), an expert might predict mod-
erately low (rather than low) forage consumption because
higher density generally means more consumption.

Experts seem to reason about prototypical cases in terms
of abstract features that are relevant to the expert’s model
of rangeland ecosystems, such as grasshopper species, de-
velopmental phases, and population density. In contrast,
a rancher’s description is almost always in terms of di-
rectly observable features, such as the color, size, and be-
havior of grasshoppers, temperatures, and precipitation.As
a result, determining the most similar prototypical case re-
quires inferring the relevant abstract features from a set
of observations provided by the rancher. Experts exhibit
great flexibility in inferring these features. For example,
if a rancher is unable to provide the information that dis-
criminates most reliably among grasshopper species (e.g.,
whether the grasshoppers have slanted faces or a spur on
their “throats”), the expert is able to ask questions that are
less reliable but easier to answer (e.g., “Are the grasshoppers
brown or green?”).

If it appears that grasshoppers will consume forage
needed by livestock, the expert determines which interven-
tions are compatible with local conditions, using knowledge
such as that wet conditions preclude the use of malathion
and that chemical treatments are precluded by environmen-
tal sensitivity. Finally, the expert estimates the relative value
of the forage saved in this and future seasons and the cost
of each control measure based on market price. The expert
then advises the rancher to take the most economical action,
either applying the most cost-effective control measure or
doing nothing. Experts can justify their advice by appealing
to an underlying causal model, but seem to use this model
only in explaining and adapting the predictions associated
with prototypes and not in performing any sort of simula-
tion.

The protocol analysis identified four important character-
istics of human expert problem solving in this field:� Graceful degradation. Human experts can use, but do

not require, highly precise information of the type re-
quired for accurate model-based reasoning. Less accurate
information may degrade the quality of advice an expert
can give, but doesn’t preclude useful advice. In the worst
case, human experts can provide plausible advice based
merely on the location of the rangeland and the date.� Speed. Human experts can provide useful advice very
quickly. This suggests that human experts can use highly
compiled knowledge.� Explanations in terms of a causal model. Although
the speed and graceful degradation of human expert per-
formance suggest that experts can use compiled knowl-
edge, they can also readily provide causal explanations for
their conclusions. Moreover, entomologists can generate

causal predictions of the effects of incremental variations
on case facts.� Opportunism. Human experts can use a variety of dif-
ferent strategies to solve a single given problem depend-
ing on the available information. Human experts don’t
address the subgoals that arise in decision-making in an
invariant order, but adapt their problem-solving behavior
to the particular facts of a given case.

In summary, the protocol analysis indicated that experts
in rangeland pest management use an eclectic approach that
includes case-based reasoning for consumption-prediction,
rules for inferring case features and acceptable control mea-
sures, and causal reasoning for adaptation and explanation.
Moreover, expert problem solving is fast and tolerant of in-
accuracies in data.

CARMA is designed to model the problem solving be-
havior of experts in managing grasshopper infestations as
described in the previous section. CARMA emulates ex-
pert human advice by providing treatment recommendations
supported by explanation in terms of causal, economic, and
pragmatic factors, including a numerical estimate of the pro-
portion of forage consumed and a cost-benefit analysis of the
various treatment options.

Application Description
Overview
CARMA’s consultation process, summarized in Figure 1,
consists of the following steps:

1. Determine the relevant facts of the infestation case from
information provided by the user by means of heuristic
rules.

2. Estimate the proportion of available forage that will be
consumed by each distinct grasshopper population (i.e.,
subcase) by matching and adapting the prototypical infes-
tation cases that best match the facts of the current case.

3. Compare total grasshopper consumption with the propor-
tion of available forage needed by livestock.

4. If the predicted forage consumption will lead to economic
loss, determine what possible treatment options are ex-
cluded by the case conditions.

5. Provide an economic analysis for each viable treatment
option by estimating both the first-year and long-term sav-
ings.

Determining Relevant Case Features
CARMA begins a consultation by eliciting observations
from the user through a window-based interface. These ob-
servations are used to infer the relevant features of a new
case, such as the species, population density, and develop-
mental phases of the grasshoppers. CARMA uses multi-
ple levels of rules for inferring each case feature, ordered
by a qualitative estimate of each rule’s accuracy or reliabil-
ity. The rules are applied in succession until either the user
can provide the necessary information or a default rule is
reached.



Figure 1: The main steps in CARMA’s consultation process.
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For example, if the value of the case feature “total num-
ber of grasshoppers per square yard” is unknown to the
user, CARMA instructs the user to estimate the number of
grasshoppers that would be present in 18 square-foot circles
(2 square yards). If the user can’t provide this information,
the system attempts to infer this feature using the heuristic
that grasshopper density is equal to 1.5 times the number
of grasshoppers seen hopping away from the user with each
step taken in the field. Otherwise, the value defaults to the
historic average for the area. By applying rules in the order
of their accuracy or reliability, CARMA reasons with the
best information available.

A typical interface window for determining the observed
grasshopper type distribution appears in Figure 2. It in-
cludes the options “Why” for describing why this informa-
tion is important to the consultation, “Help” for advising the
user about the various window features and their operations,
“How To” to explain the proper procedure for gathering the
required information, “Not sure” to trigger the selection of
an alternative rule for inferring the feature, “Back” to move
to the previous screen in the consultation, and “OK” to indi-
cate that the user has chosen an answer. “Display planthop-
per” shows a small insect that the user should distinguish
from a recently hatched grasshopper nymph.

Because a complete case specification is not always re-
quired for useful advice, CARMA fills in the facts of a new
case opportunistically, asking the user for information only
when the corresponding case feature is required for the rea-
soning process to continue. At the earliest point at which
a decision can be made, the case-feature inference process

halts, advice is given, and the consultation is ended. For ex-
ample, if the date and location of an infestation indicate that
it is too early to assess the severity of a grasshopper infesta-
tion, CARMA advises the user to rerun the consultation at a
later time without prompting for further information.

Case Matching

The protocol analysis indicated that pest managers estimate
forage consumption by comparing new cases to prototypi-
cal cases. A tract of rangeland almost invariably contains
multiple grasshopper species, which may differ widely in
consumption characteristics. In particular, grasshoppers that
spend the winter as nymphs consume far less during the
growing season than grasshoppers overwintering as eggs.
CARMA therefore partitions the overall population of a new
case into subcases according to overwintering type. Proto-
typical cases each represent a single grasshopper population.

To predict the forage loss of a subcase, CARMA first
retrieves all prototypical cases whose overwintering type
matches that of the subcase. The weighted sum of feature
differences between each prototypical case and the new sub-
case is calculated to determine the most similar prototypical
case. Match weights are determined from the mutual infor-
mation gain between case features and qualitative consump-
tion categories in a given set of training cases. The forage-
loss prediction associated with the given case is then adapted
to compensate for differences between the current case and
the most similar prototypical case usingmodel-based adap-
tation, discussed in the next section.



Figure 2: Elicitation of grasshopper type information in CARMA.

Forage Loss Estimation

After adaptation, the consumption predictions for each sub-
case are summed to produce an overall consumption esti-
mate. If the proportion of available forage that will be lost
to grasshoppers and the proportion needed for livestock (and
wildlife) exceeds 100% of the forage available, CARMA
concludes that grasshoppers will cause economic losses.

Determining Treatment Options

If grasshoppers will cause economic losses, CARMA ap-
plies a set of rules to determine the treatment options that are
excluded by the conditions of the case. Some of the informa-
tion necessary for determining exclusion is already known
from the case features (e.g., the presence of grasshoppers in
the first nymphal instar indicates an ongoing hatch, which
precludes malathion and carbaryl bait from consideration).
Other conditions must be determined from further user in-
put (e.g., “Will it be hot at the time of treatment?” If so,
exclude malathion).

Treatment Recommendation

For each acceptable treatment option, CARMA provides es-
timates of the reduced probability of future reinfestationand
current-year and long-term savings. From the estimated sav-
ings, CARMA recommends the treatment or treatments that
are most economical. Explanation text in this and other
CARMA windows is produced using conventional schema-
based techniques (Moore, 1995).

CARMA calculates the total reduced probability of fu-
ture reinfestation for each treatment type using a Markov
model of infestation probability for each location derived
from historical data collected by the USDA and synthesized
by the University of Wyoming Entomology Section (Lock-
wood and Kemp, 1987). CARMA computes the current-
year savings as the difference between the value of forage
saved and the treatment cost. CARMA calculates the sav-
ings for future years for each treatment type via multiplying
the reduced probabilities of reinfestation by the estimated
forage loss for each subsequent year.

A typical treatment recommendation window including
estimates of future reinfestation and economic savings ap-



Figure 3: CARMA’s treatment recommendation screen.

pears in Figure 3. CARMA lists both worst- and best-case
scenarios for most calculations. Note that this analysis in-
cludes “no treatment” as an option and that negative savings
indicate a loss.

CARMA recommends the treatment that is estimated to
save the most under a worst-case scenario and the treatment
that is estimated to save the most under a best-case scenario.
Usually, the worst- and best-case scenarios produce the same
recommended treatment. Following the treatment recom-
mendation, the consultation is complete.

Uses of AI Technology
CARMA uses AI technology in two distinct ways. First, as
described above, CARMA’s control strategy emulates hu-
man experts’ speed, opportunism, explanation capability,
flexibility in eliciting relevant case features through a va-
riety of alternative heuristic rules, and ability to integrate
multiple knowledge sources. Second, CARMA uses model-
based adaptation for the key reasoning step of predicting the
amount of forage that will be consumed by grasshoppers.

Model-based adaptationconsists of using CBR to find an
approximate solution and model-based reasoning to adapt
this approximate solution into a more precise solution.
Model-based adaptation is useful in domains in which both
cases and models are available, but neither is individually
sufficient for accurate prediction. Such domains are typi-
fied by chemical or biological systems with well-developed,
but imperfect, models. Model-based adaptation has been ap-
plied for bioprocess recipe planning in Sophist (Aarts and
Rousu, 1996; Rousu and Aarts, 1996), for selecting col-
orants for plastic coloring in FormTool (Cheetham and Graf,
1997), and in design reuse (Goel, 1991).

Model-based adaptation is appropriate for CARMA’s ad-
visory task because both empirical knowledge, in the form
of cases, and a grassland ecology model are available, but
neither is individually sufficient for accurate predictionof
forage consumption, given the information that ranchers can
typically provide.

Case-Based Reasoning in CARMA The initial impetus
for using CBR for forage consumption prediction was cog-
nitive verisimilitude. The protocol analysis suggested that
human experts in this domain reason using prototypes. This
is consistent with various cognitive studies that have demon-
strated that examples or prototypes often play a central role
in human concept structure (Klein and Calderwood, 1988;
Smith and Medin, 1981).

During the development of CARMA, however, CBR’s
ability to facilitate knowledge acquisition grew in impor-
tance. Few precise records of rangeland grassland infesta-
tions are available. However, there are a number of expert
pest advisors with many years of experience with rangeland
grasshopper infestations.

To capture human expertise, we sent questionnaires de-
scribing hypothetical Wyoming infestation cases to ento-
mologists recognized for their work in the area of grasshop-
per management and ecology. Each expert received 10 cases
randomly drawn from a total of 20 representative cases. The
descriptions of the 20 cases contained at least as much infor-
mation as a rancher ordinarily provides to an entomologist.
The questionnaire asked the expert to estimate the proba-
ble forage loss1. Eight sets of responses were received from

1The questionnaire also asked the expert to identify the most
appropriate course of action. This information was used in the val-



Figure 4: Projection of a prototypical case PC to PC’ to align
its developmental phase with new case NC.
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Wyoming experts, who had a mean of 18.0 years experi-
ence2. CARMA’s case library consists of the 20 hypotheti-
cal cases. The consumption prediction associated with each
case is the mean of the experts’ predictions for that case.

Adaptation CARMA uses three techniques for adapta-
tion: temporal projection; feature adaptation; and critical pe-
riod adaptation. Two of those techniques—temporal projec-
tion and critical period adaptation—make use of the range-
land ecosystem model. Temporal projection is needed be-
cause the feature values of each prototypical case are repre-
sented at a specific point in the life history of the grasshopper
population. To determine the match between the grasshop-
per population densities of each prototypical case and a new
subcase, the life history of the prototypical case must be pro-
jected forward or backward to align its average developmen-
tal phase with that of the new subcase. This requires using
a model to simulate grasshopper attrition, which depends on
developmental phase, precipitation, and developmental rate
(which in turn depends on temperature) throughout the in-
terval of the projection.

Figure 4 illustrates how the population in prototypical
case PC must be projected backward in time to PC’ to match
the average developmental stage of new subcase NC. Projec-
tion backward in time increases grasshopper density by re-
moving the effect of attrition over the interval of the projec-
tion, whereas projection forward in time decreases grasshop-
per density by adding attrition during this interval. The ver-
tical bar corresponding to PC and PC’ indicates the confi-
dence range for grasshopper density, which always increases
(indicating greater uncertainty) as a function of the interval
projected.

In feature adaptation, the forage loss predicted by the

idation of CARMA’s advice, but did not become part of CARMA’s
knowledge base.

2The mean standard deviation of forage loss predictions for all
the hypothetical cases was 12.4%, a variation sufficiently high to
call into question the reliability of experts for this task.However,
the issue of the validity of human expertise in this field is beyond
the scope of this project. Instead, our goal was to emulate the judg-
ments of human experts under the assumption that these judgments
are valid.

best matching prototypical case is modified to account for
any feature differences (other than average developmental
phase) between it and the subcase. The modification is a lin-
ear function of the feature differences. The coefficients of
the linear function are determined by a form ofintrospective
learning(Leake et al., 1995; Hanney and Keane, 1997), con-
sisting of hill climbing through parameter space to optimize
leave-one-out predictive accuracy on the case library.

Critical-period adaptation is needed because grasshopper
consumption is most damaging if it occurs during the portion
of the growing season during which forage losses cannot be
fully replaced by forage growth, termed thecritical period.
The forage loss predicted by a prototypical case must be
adapted if the proportion of the lifespan of the grasshoppers
overlapping the critical period in the new case differs from
that in the prototypical case. This requires determining, for
both the new case and the prototypical case, the proportion
of the grasshopper population’s lifetime consumption occur-
ring in the critical period. For a more complete description
of model-based adaptation in CARMA, see Branting et al.
1997.

Experimental Evaluation of Model-Based
Adaptation

The design of CARMA’s forage consumption component
was based on the hypothesis that an integration of model-
based and case-based reasoning can lead to more accurate
forage consumption predictions than the use of either tech-
nique individually. This hypothesis was based on the obser-
vation that neither the causal model nor the empirical data
available for rangelands are individually sufficient for accu-
rate prediction. To test this hypothesis, an ablation studywas
performed in which CARMA’s empirical and model-based
knowledge components were each tested in isolation and
compared the results to the performance of the full CARMA
prediction system.

Each predictive method was tested using a series of leave-
one-out tests in which a set of cases (S) from a single expert
was split into one test case (C) and one training set (S� C).
The methods were trained on the forage-loss predictions of
the training set and tested on the test case. This method was
repeated for each case within the set (S).

CARMA’s empirical component was evaluated by per-
forming leave-one-out tests for CARMA’s forage consump-
tion module with all model-based adaptation disabled.
CARMA’s forage consumption module with model-based
adaptation disabled is termedfactored nearest-neighbor pre-
diction (factored-NN), because under this approach predic-
tion is based simply on the sum of nearest neighbor pre-
dictions for each subcase. Two other empirical methods
were evaluated as well: decision-tree induction using ID33

(Quinlan, 1986) and linear regression using QR factorization
(Hager, 1988) to find a least-squares fit to the feature values

3ID3 classified cases into 10 qualitative consumption categories
representing the midpoints (5, 10, 15, ... , 95) of 10 equallysized
qualitative ranges. ID3’s error was measured by the difference be-
tween the midpoint of each predicted qualitative category and the
expected quantitative consumption value.



and associated predictions of the training cases.
The predictive ability of CARMA’s model-based compo-

nent in isolation was evaluated by developing a numerical
simulation based on CARMA’s model of rangeland ecol-
ogy. This simulation required explicit representation of two
forms of knowledge implicit in CARMA’s cases: the forage
per acre based on the range value of the location, and the for-
age typically eaten per day per grasshopper for each distinct
grasshopper overwintering type and developmental phase.

The accuracy of each approach was evaluated using leave-
one-out testing for the responses from each of the eight
Wyoming experts and for a data set consisting of the me-
dian of the predictions of the Wyoming experts on each
case. The full CARMA prediction system was tested using
both global adaptation weights (CARMA-global) and case-
specific adaptation weights (CARMA-specific).

The root-mean-squared error for each of the methods are
set forth in Table 1. These provide initial confirmation
for the hypothesis that integrating model-based and case-
based reasoning through model-based adaptation leads to
more accurate forage consumption predictions than the use
of either technique individually. The smallest root-mean-
squared error rate was obtained by CARMA-specific. On
the Wyoming Expert Sets, the root-mean-squared error rate
was 13.3% for CARMA-specific and 14.2% for CARMA-
global. The root-mean-squared error rate was higher
both for the empirical approaches—21.1% for factored-NN,
34.9% for ID3, and 25.6% for linear regression—and for the
purely model-based approach—29.6%. CARMA-specific
and CARMA-global were also more accurate than the alter-
native methods on the Wyoming median set, although linear
regression was only slightly less accurate.

The initial confirmation of the hypothesis that integrat-
ing model-based and case-based reasoning through model-
based adaptation leads to more accurate forage consump-
tion predictions than the use of either technique individu-
ally is tentative because the relatively low level of agreement
among experts and the absence of any external standard give
rise to uncertainty about what constitutes a correct predic-
tion. A detailed description of the empirical evaluation of
CARMA is set forth in (Branting et al., 1997).

Application Use and Payoff
In June, 1996, CARMA 2.0 was distributed to University
of Wyoming Cooperative Extension Offices and Weed and
Pest District Offices in each of Wyoming’s 23 counties and
was made available to be downloaded from a University of
Wyoming website. CARMA 2.0 was used by Wyoming
ranchers and pest managers every summer from 1996 to
2000. CARMA has been endorsed and advocated for use
by pest managers by the United States National Grasshop-
per Management Board (NGMB, 2001). Perhaps the great-
est interest in the system has been expressed by the county-
level Weed and Pest District supervisors, who—with the
withdrawal of USDA support—have become the “front line”
agency in grasshopper pest management. Workshops to train
these individuals in the optimal use of CARMA were devel-
oped and delivered at the request of the agency.

Although CARMA was designed as an advisory system
for ranchers, CARMA’s ability to robustly integrate a vari-
ety of knowledge sources led it to be applied in several ways
that were not imagined when the program was developed.
First, CARMA’s economic analysis has been used to jus-
tify pest management policy decisions. In 1998, CARMA’s
economic analysis was used to generate a declaration of
grasshopper disaster areas by Wyoming County Commis-
sions, leading to low interest, federal loans by the Farm Ser-
vice Administration. CARMA’s economic analysis played a
role in the National Grasshopper Management Board’s rec-
ommendation of a new treatment approach, Reduced Agent
Area Treatments (RAATs) (Nelson, 1999), a strategy now
adopted in six states.

Second, CARMA’s analysis was incorporated into indus-
try strategies. Uniroyal (CK Witco) developed recommenda-
tions for the use of Dimilin, a new chemical pesticide, using
CARMA’s analysis. Similarly, RhônePoulenc (Aventis) de-
veloped recommendations for the use of Fipronil based on
CARMA’s analysis.

Finally, CARMA-based economic analysis was incorpo-
rated into pest management research in (Lockwood et al.,
1999) and (Lockwood and Schell, 1997).

Development, Deployment, and Maintenance
CARMA was developed as a dissertation project (Hastings,
1996). The out-of-pocket development costs were small,
consisting of several years of graduate research assistant
support and the license fees for Franz Allegro Common
Lisp, the language in which CARMA was developed. How-
ever, the path to the development of CARMA was quite cir-
cuitous, with a variety of different approaches to grasshop-
per advising having been developed, tested, and rejected.
Thus, the development costs would have been much higher
outside of an academic environment.

In the years since the distribution of CARMA 2.0, there
have been a number of changes in pest-treatment practices.
In 2000, CARMA 2.0 was updated to CARMA 3.0 to reflect
these changes and to include a spreadsheet for calculating
per acre treatment costs under various alternative economic
conditions. CARMA’s declarative knowledge representation
made revising the program straightforward. These changes
were funded by a grant from a producer of a pesticide in-
troduced after the distribution of CARMA 2.0 and there-
fore not included as a treatment option in the earlier version.
The pesticide maker’s interest in being incorporated into the
CARMA revision demonstrates the perception that this ad-
visory system is an important tool in pest management.

Conclusion
CARMA demonstrates how AI technology can be used to
deliver expert advise to compensate for cutbacks in public
services. CBR proved to be an appropriate AI technique
for the forage-prediction component both because experts in
this domain appear to reason with cases and because asking
experts to solve example cases was an effective knowledge-
acquisition technique. Model-based adaptation provided a
mechanism for incorporating rangeland ecosystem models



Table 1: Root-mean-squared error rate (in %) for leave-one-out test results.

CARMA Empirical Only Model-Based Only
Specific Global Factored- ID3 Linear Numerical
weights weights NN regr. simulation

Wyoming expert sets 13.3 14.2 21.1 34.9 25.6 29.6
Wyoming median set 9.7 10.0 22.8 35.2 11.9 28.8

into the system without the slow performance, sensitivity
to noise, and diminished explanation capability that would
have resulted from a purely simulation-based approach.

A key factor in CARMA’s acceptance among users is its
simple interface and speed, which make using CARMA very
straightforward. The combination of a a simple interface,
flexible control strategy, and integration of multiple knowl-
edge sources makes CARMA accessible to inexperienced
users and capable of producing advice comparable to that
produced by human experts.
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