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Hastings, John Douglas, A Mixed Paradigm Reasoning Approach to Problem-Solving in
    Incomplete Causal-Theory Domains, PhD, Department of
    Computer Science, December, 1996.

Many complex physical systems such as biological, ecological, and other natural

systems are characterized both by incomplete models and limited empirical data.  Accurate

prediction of the behavior of such systems requires exploitation of multiple, individually

incomplete, knowledge sources.

  This dissertation describes model-based adaptation, a technique for integrating

case-based reasoning with model-based reasoning to predict the behavior of biological

systems characterized both by incomplete causal models and insufficient emprical data for

accurate induction.  This approach is implemented in CARMA, a system for rangeland

grasshopper management advising.  CARMA implements a process model derived from

protocol analysis of human expert problem-solving episodes.  CARMA's design attempts

to emulate the speed, graceful degradation, opportunism, and explanatory ability of human

experts.

CARMA's ability to predict the forage consumption judgements of expert

entomologists was empirically compared to that of case-based and model-based reasoning

techniques in isolation.  This evaluation confirmed the hypothesis that integrating model-

based integrating model-based and case-based reasoning can lead to more accurate

predictions than the use of either technique individually.
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In the life sciences, physical systems are contrasted with biological systems, but in this1

paper biological systems are classified as a subset of physical systems.

1

Chapter 1

Introduction

1.1 Predicting the Behavior of Physical Systems

One of the most striking characteristics of human problem-solving behavior is the

ability to exploit multiple knowledge sources and reasoning techniques.  This ability is

important because problem solving often occurs in an environment of incomplete

knowledge. Automating this ability requires techniques for integrating multiple

problem-solving paradigms in a flexible manner.

For example, many types of diagnostic, monitoring, and planning tasks require

prediction of the behavior of physical systems .  Precise models exist for the behavior of1

many simple physical systems. However, models of biological, ecological, and other

natural systems are often incomplete, either because a complete state description for such

systems cannot be determined or because the number and type of interactions between

system elements are poorly understood.  Empirical methods, such as case-based reasoning,

decision-tree induction, or statistical techniques, can be used for prediction if sufficient

data are available.  In practice, however, many biological systems are characterized both
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by incomplete models and insufficient empirical data for accurate induction.  Accurate

prediction of the behavior of such systems requires exploitation of multiple, individually

incomplete, knowledge sources.

1.2 Research goals

The research described in this dissertation attempts to satisfy both theoretical and

practical goals.  Theoretically, this research demonstrates how multiple knowledge sources

may be integrated for the purpose of providing accurate predictions about the behavior of

physical systems whose causal theory is incomplete.  Underlying this approach is the view

that computer systems should emulate the human capacity to employ whatever reasoning

technique is most appropriate for a given task or knowledge type.  The goal of this

approach is to enable computer systems to optimize the use of the diverse and incomplete

knowledge sources available to decision-makers and to produce patterns of reasoning that

resemble those of human decision-makers.  This integration will be shown in the context

of rangeland grasshopper management advising, a specific task arising within rangeland

management that requires predictions in a biological system characterized both by an

incomplete model and insufficient empirical data for accurate use of empirical techniques.

The main focus will be a specific integration technique, model-based adaptation,

for combining an incomplete causal model with case-based reasoning to improve

predictions about the forage loss caused by grasshoppers in a rangeland ecosystem.  The

technique of integration to predict forage loss is compared to other problem-solving 
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approaches.  Ablation tests are used to evaluate the relative contributions of the

incomplete causal model and case-based reasoning to predict forage loss.

On the practical side, the rangeland grasshopper management advising task has

been implemented in a system termed CARMA (CAse-based Range Management

Adviser).  CARMA demonstrates that integrating various reasoning paradigms can lead to

a useful advising system.  CARMA's advice is evaluated by comparing it to the advice

given by entomologists.

1.3 Reader's guide to the dissertation

This chapter motivates the dissertation in the context of predicting the behavior of

physical systems with an incomplete causal theory domain.  Chapter 2 introduces

rangeland grasshopper management advising as a specific task that requires making such

predictions.  Although many of the components of a rangeland grasshopper ecosystem are

known, the causal model is incomplete in that the interactions among the components are

only partially understood.  The incompleteness of the various knowledge sources requires

integrating them to produce the most accurate advice.

Chapter 3 describes CARMA, a system that advises ranchers about the best

response to rangeland grasshopper infestations by integrating the multiple problem solving

paradigms (specifically model-based and case-based reasoning) used by human experts.

Chapter 4 describes how CARMA's case-based reasoning component learns match

and featural adaptation weights in order to maximize its predictive accuracy.



4

Chapter 5 details the evolution of CARMA through various configurations based

on tests of the forage consumption prediction component.  An evaluation of CARMA's

final configuration is provided in terms of forage consumption predictive accuracy and

treatment recommendation quality.

Chapter 6 compares this dissertation to other research efforts.

Chapter 7 discusses the contributions of this research and proposes future work.
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Chapter 2

An Information Processing View of
Rangeland Grasshopper Management

This chapter introduces the task of rangeland grasshopper management advising. 

Rangeland grasshopper management advising is a specific task arising within rangeland

management that requires making accurate predictions about the behavior of a physical

system with an incomplete causal theory.  The absence of a complete and accurate model

necessitates integrating a variety of individually incomplete knowledge sources.  The

applicability of various knowledge sources to this task is described in a process description

of expert problem solving.  In performing this process, human experts exhibit several

characteristics that are desirable to emulate in a computer system.

2.1 Rangeland grasshopper management

In most years and locations, the majority of grasshopper species are innocuous or

even beneficial to grassland ecosystems.  Of over 300 species of grasshoppers in the

western United States, perhaps only 15 can be considered serious pests; many of the other

species are beneficial in terms of controlling weeds, nutrient cycling, and food for wildlife

(Lockwood 1993a; Lockwood 1993b).  However, large-scale grasshopper outbreaks are



6

capable of inflicting serious economic damage to western livestock producers.  On

average, grasshoppers annually consume 21-23% of western rangeland forage, at an

estimated loss of $400 million (Hewitt & Onsager 1983).  For example, in 1985-86,

Wyoming treated approximately 6.5 million acres at a cost of $22.75 million to private,

state and federal interests.  Due in part to restructuring of the state cost-share program,

some 9 million acres of infested rangeland were left untreated in 1987, resulting in the loss

of 225,000 tons of air-dried forage.  

Rangeland grasshopper management advising is a specific task that attempts to

properly manage grasshopper infestations in order to minimize financial losses.  It requires

making accurate predictions about the amount of forage that will be consumed by

grasshoppers and deciding whether any insecticide application is morally or economically

justifiable.  However, the decision whether to use insecticides or other control measures is

a complex task because of the multiplicity of relevant factors, such as maintaining minimal

inputs for profitable ranching in the western United States, preserving natural enemies for

chronic control of grasshoppers (Joern & Gaines 1990), safeguarding biodiversity

including beneficial grasshoppers, and protecting environmental and human health.

2.2 Behavioral Prediction with an Incomplete Causal Model

A causal model for the behavior of a physical system is a model of the interactions

among the components of the system that is capable of predicting or explaining the

system's behavior.  In domains with complete causal theories, predictions about the

behavior of the systems are made by looking at the state of the components within the
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system and applying the causal model.  For example, knowing the voltage(s) applied to an

electrical circuit and the causal model of the circuit - characteristics of each component

and their connections - allows one to predict the circuit's behavior.

However, many domains lack a complete causal theory.  Causal models may be

incomplete in any of the following ways:

1. Imprecisely parameterized (i.e., the nature of the interactions is known only in

a general sense),

2. Incompletely parameterized (i.e., the components are known to interact, but

the nature of the interactions is unknown),

3. Incompletely connected (i.e., it is not known which components interact), or

4. Incompletely constructed (i.e., missing components relevant to the behavior of

the system).

Although many of the components of a rangeland grasshopper ecosystem are

known, the causal model is incomplete in that the interactions among the components are

only partially understood.  While model-based reasoning can play a role in grasshopper

management, there is a general recognition that the interactions affecting grasshopper

population dynamics are too poorly understood and too complex to permit precise

prediction through numerical simulation (Lockwood & Lockwood 1991; Pimm 1991;

Allen & Hoekstra 1992).  Grasshopper populations are extremely labile, and a multiplicity

of biotic and abiotic factors regulate their densities.  Based on a simplified rangeland
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Although not explicitly setting forth any systematic or formal means of case-matching,2

(Pedgley 1981) is premised on the assumption that forecasting locust population dynamics
and appropriate management strategies can be based on comparisons with specific cases.

habitat comprised of just 10 grasshopper species, 10 plant species, four soil types, and 10

predators, Lockwood (1996) calculated that 10,560 two- and three-factor interactions end

with grasshoppers.  More realistic estimates of diversity suggest as many as 175 million

interactions end with grasshoppers.  If even 1% of these were ecologically relevant, the

number of interactions would be far too great to simulate.  Thus, while simulations of

grassland ecosystems can provide insight into their dynamics (Fedra 1991; Rodell 1978), it

is not feasible to devise models adequate for accurate prediction of the consequences of

treatment options.

Despite the fact that rangeland ecology is poorly understood and very complex,

entomologists experienced in rangeland management routinely provide useful advice to

ranchers.  The decisions of pest managers addressing this task appears to be largely based

on a set of synthetic, prototypical cases that take into account the diversity of rangeland

conditions, productivities, and vegetation types, the enormous range of weather

conditions, and site-specific elements (e.g., honey production, wildlife management, water

development, etc.). These cases do not necessarily correspond to specific real world

experiences, but express the essential features of past management experiences that define

prototypical instances in which particular management practices are optimized.  For

example, the most authoritative guide for management of African (Desert) Locust

infestations consists of a collection of discrete cases compiled as a reference for workers

(Pedgley 1981) .  Specific cases have been found to be an important knowledge source in2
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Figure 1:  Qualitative relations in rangeland
ecosystems.

a variety of problem domains in which precise general rules are unavailable or inadequate

(Klein & Calderwood 1988).

A second form of knowledge used by experts in rangeland grasshopper

management consists of general rules that appear to constrain management decisions

under specific circumstances (e.g., there is no point in controlling grasshoppers once the

adults have laid eggs, as the majority of the damage is already done and the next

generation is assured).

Finally, while the causal

model of rangeland ecology is

insufficient for providing

accurate predictions about

rangeland grasshoppers, there are

some aspects of grasshopper

population ecology for which

there is sufficient information to

apply mechanistic models (e.g.,

the development of grasshoppers

through the nymphal stage is a relatively well-defined function of temperature).  Figure 1

sets forth the most important of the qualitative causal constraints that influence forage

consumption.  M+ indicates monotonically increasingly relations (e.g., increasing the level

of pesticides in the system causes an increase in grasshopper attrition), while M- indicates

monotonically decreasing relations (e.g., increasing grasshopper attrition causes a decrease
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in grasshopper density).  The proportion of forage consumed is determined by dividing the

forage consumption by the forage production.  Other information available for modeling

rangeland grasshopper ecosystems includes the following: 

1. The developmental stages of grasshoppers, including

a. The average length or developmental rate of each stage adjusted according

to temperature.

b. The proportion of lifetime consumption that occurs at each stage.

c. The attrition rate at each stage adjusted according to precipitation.

2. Some species of grasshoppers, termed nymphal overwintering, hatch late in the

growing season, hibernate during the winter as nymphs, and complete their

development during the following growing season.  Others, termed egg

overwintering species, overwinter as eggs, then hatch, lay eggs and die within a

single growing season.

3. The significant production of forage at a location occurs during a specific

portion of the growing season, termed the critical forage growing period, for

that location.

In summary, rangeland grasshopper management advising is a specific task arising

within rangeland management that requires making accurate predictions about the

behavior of a physical system with an incomplete causal theory.  The absence of a 
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During their lifetime, grasshoppers progress through three developmental stages: egg,3

nymph, and adult.  The nymphal stage usually consists of five instars separated by molts. 
The eight developmental phases of a grasshopper's lifecycle are defined as follows: 1 =
egg; 2 = nymphal instars 1 through 3; 3 = instars 2 through 4; 4 = instars 3 through 5; 5 =
instars 4 through 5; 6 = pre-egg laying adults; 7 = adults; and 8 = dead grasshoppers.

complete and accurate model necessitates integrating a variety of individually incomplete

knowledge sources, including both empirical and model-based knowledge.

2.3 Process Description of Expert Problem Solving

The ability of entomologists and pest managers to provide meaningful advice

further indicates that other sources of knowledge can compensate for the absence of a

complete model of rangeland ecosystems.  To explicate these knowledge sources and also

problem-solving methods, a protocol analysis of problem solving by several experts in

rangeland grasshopper management at the University of Wyoming was performed.  For

each expert, several problem-solving episodes were transcribed in which the expert

responded to a simulated telephone inquiry by a rancher.  These "solve-aloud"

problem-solving episodes illustrate the elicitation of relevant case facts by the expert, the

formation and discrimination among tentative hypotheses, and expert explanations.  Based

on this protocol analysis, the following process description of expert problem solving for

this task was developed:

1. Determine the relevant facts of the infestation case, such as grasshopper

species, developmental phases,  and density, from information provided by the3
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user.  This requires rule-based reasoning using rules such as, "if grasshoppers

are observed to have brightly colored wings or make a clicking sound in flight,

then they are bandwinged adults that overwintered as nymphs."

2. Determine whether the grasshopper infestation is a potential problem.  The

infestation is not a problem if:

a. The current date is outside of the "growing season" when forage needed

for livestock grows.  This requires rule-based reasoning to determine

whether the date is outside of the growing season, given the historical

growing season for the location and the date.

b. The size of the infestation is small.  This requires rule-based reasoning to

determine whether the infestation size is below a minimum threshold.

c. The majority of the grasshoppers overwinter as nymphs.  This requires

rule-based reasoning to determine whether the majority of the

grasshoppers observed have brightly-colored wings or make a clicking

sound in flight, and are therefore, adult bandwinged grasshoppers that

overwintered as nymphs.

d. The majority of the grasshoppers are in inappropriate phases.  This requires

rule-based reasoning to determine whether the majority of the

grasshoppers are at such an early developmental phase that the extent of

the infestation cannot be predicted with reasonable certainty or at such a

late developmental phase that a significant proportion of lifetime forage 
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consumption and egg-laying have already occurred, making insecticide

application pointless.

3. If the infestation is potentially a problem, determine whether grasshopper

consumption will lead to competition with livestock for available forage.

a. Estimate the proportion of available forage that will be consumed by each

distinct grasshopper population (i.e., nymphal overwintering, egg

overwintering) using case-based reasoning.  For each distinct grasshopper

population (i.e., subcase):

i. Determine the prototypical case that most closely matches the current

subcase.  This requires model-based reasoning to assist matching by

aligning the developmental phases of the prototypical case and the

subcase.

ii. Adapt the consumption estimate predicted by the prototypical case

based on the featural differences between the prototypical and current

subcase.  This requires model-based reasoning to account for the

influence of each feature on consumption.

b. Total the forage loss estimates for each subcase to predict the overall

proportion of available forage that will be consumed by grasshoppers.

c. Compare grasshopper consumption with the proportion of available forage

needed by livestock.

4. If there will be competition, determine what possible treatment options should

be excluded.  This requires rule-based reasoning using rules such as "wet
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conditions preclude the use of malathion; environmental sensitivity precludes

all chemical treatments."

5. If there are possible treatment options, for each one provide an economic

analysis by estimating both the first-year and long-term savings.

a. Estimate the first-year savings using model-based reasoning to determine

the proportion of forage which would be saved given the efficacy of the

treatment type, the developmental phases of the grasshoppers at the time of

treatment, and the proportion of lifetime consumption by grasshoppers at

each phase.

b. Estimate the long-term savings using rule-based reasoning to determine if

the majority of the grasshoppers will begin laying eggs before treatment

can be applied given the developmental distribution of the grasshoppers at

the time of treatment.  If the majority of grasshoppers will not begin laying

eggs, use statistical reasoning to determine the decreased probability of

infestation in subsequent years given the Markov transitional probabilities

for the infestation location and the effect of the treatment type on beneficial

control agents.
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In performing this process, human experts exhibit several desirable characteristics:

1. Speed.  Human experts can provide useful advice very quickly.  This suggests,

consistent with the process description, that human experts can use highly

compiled knowledge in the form of prototypical cases and rules.

2. Graceful degradation.  Human experts can use, but do not require, highly

precise information of the type required for accurate model-based reasoning. 

Less accurate information may degrade the quality of advice an expert can

give, but doesn't preclude useful advice.  In the worst case, human experts can

provide plausible advice based merely on the location of the rangeland and the

date.

3. Explanations in terms of a causal model.  Although the speed and graceful

degradation of human expert performance suggest that experts can use

compiled knowledge, they can also readily provide causal explanations for their

conclusions.  Moreover, entomologists can generate causal predictions of the

effects of incremental variations on case facts.  This behavior strongly suggests

that they have access to causal models that can assist in explanation and in

adaptation of prototypical cases.

4. Opportunism.  Human experts can use a variety of different strategies to

solve a single given problem depending on the available information.  Human

experts don't address the subgoals that arise in decision-making in an invariant 
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order, but adapt their problem-solving behavior to the particular facts of a

given case.

In summary, rangeland grasshopper management typifies a task in which the

absence of a complete and accurate model necessitates integrating a variety of individually

incomplete knowledge sources.  The next chapter describes CARMA, a multiple-paradigm

computer system for rangeland management.
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Chapter 3

CARMA: A Multiple-paradigm Advisory System

CARMA (CAse-based Range Management Adviser) is a system for advising

ranchers about the best response to rangeland grasshopper infestations.  The protocol

analysis described in Chapter 2 indicated that a solution should consist of a treatment

recommendation supported by an explanation in terms of causal, economic, and pragmatic

factors, including a numerical estimate of the proportion of forage consumed and a

cost-benefit analysis of the various treatment options.  Because this advice can't be

produced by any individual reasoning technique, the focus of the CARMA project has

been on integrating the multiple problem solving paradigms used by human experts.

Figure 2 shows the goal-structure that CARMA attempts to satisfy during a

consultation, including a treatment recommendation as the top-level goal.  Figure 3 shows

an overview of CARMA's components, including the consultation manager and its tasks,

and the reasoning modules and information required to complete the tasks.  Sections 1

through 5 of this chapter describe CARMA's use of different reasoning paradigms to

implement the process description of entomological problem solving set forth in Chapter

2.  The last section summarizes how model-based reasoning and case-based reasoning are

integrated in CARMA, and how CARMA emulates the four desirable expert
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Figure 2:  The goal structure that CARMA attempts to satisfy during a consultation. 
"Treatment recommendation" is the top-level goal.  Subgoals separated by �'s mean
that satisfying any of the subgoals results in satisfying the parent goal.  Subgoals
separated by �'s mean that all subgoals must be satisfied in order to satisfying the
parent goal.

characteristics (i.e., speed, opportunism, graceful degradation, and explanations in terms

of a causal model.)

3.1 Determining Relevant Case Features

CARMA provides advice by reasoning about the relevant features of an infestation

case (e.g., the species, density, and developmental phases of the grasshoppers).  These

features are inferred by rules from information provided by the user through 
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Figure 3: Organizational Overview of CARMA's Components.  Hexagons represent tasks,
rectangles represent modules, ovals represent information, and lines represent information
paths.  The order of consultation steps is not shown.

window-based interface procedures.  CARMA makes use of multiple levels of rules for

inferring each case feature, ordered by the certainty or the accuracy of each rule.  The

rules are applied in succession until either the user can provide the necessary information

or a default value is chosen.  For example, if the value of the case feature "total number of

grasshoppers per square yard" is unknown to the user, CARMA instructs the user to

estimate the number of grasshoppers that would be present in 18 square-foot circles.  If
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Figure 4:  Interface window for determining the observed grasshopper type distribution.

the user can't provide this information, the system attempts to infer this feature using a

rule that grasshopper density is equal to 1.5 times the number of grasshoppers seen

hopping away with each step taken by the user in the field.  Otherwise, the value defaults

to the statewide historic average of four grasshoppers per square yard.  By applying rules

in the order of their certainty, CARMA reasons with the best information available.

A typical interface window for determining the observed grasshopper type

distribution appears in Figure 4.  It includes the options "Why" for describing why this

information is important to the consultation, "Help" for advising the user about the various

window features and their operations, "How To" to explain the proper procedure for
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Figure 5:  Interface window for determining infestation location.

gathering the required information, "Not sure" to trigger the selection of an alternative

rule for inferring the feature, and "OK" to indicate that the user has chosen an answer. 

"Display planthopper" shows a small insect that the user should not accidentally mistake

for a grasshopper.

Figure 5 shows an input window that asks the user to provide the infestation

location by clicking on a map of Wyoming's major roads, towns, and county borders. 

CARMA uses this location to retrieve the historical values for the site including infestation

history, range value, temperatures, and precipitation.
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Since a complete case specification is not always required to give advice, CARMA

fills in the facts of a new case opportunistically. This means that CARMA asks the user for

information only when the corresponding case feature is required for the reasoning

process to continue.  At the earliest point at which a decision can be made, the

case-feature inference process halts, advice is given, and the consultation is completed. 

This minimizes the amount of input required for CARMA to make a decision, thereby

accelerating consultations.  For example, the date and location of an infestation may

indicate that it is too early to assess the severity of a grasshopper infestation.  In such

cases, CARMA advises the user to rerun the consultation at a later time without

prompting for further information.

3.2 Determining Infestation Potential

CARMA's first step in advising a rancher about the best response to a grasshopper

infestation is deciding whether a potential problem exists.  CARMA determines that an

infestation is not a problem and terminates a consultation if it discovers any of the

following facts:

1. The date is outside of the growing season.

2. The size of the infestation is too small to be viable.

3. The majority of the grasshoppers overwinter as nymphs.

4. The developmental phases of the majority of the grasshoppers are too early for

accurate prediction or too late for effective treatment.
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The sections that follow describe why these conditions lead to the termination of a

consultation, and the methods used to make these decisions.

3.2.1 Outside of the Growing Season

Consumption by grasshoppers is only damaging if it occurs within the growing

season of rangeland vegetation when forage needed for livestock grows.  If the date of the

current infestation is earlier or later than the historical growing season for the area, any

grasshoppers that are present will not cause appreciable damage, so no action should be

taken.  This decision is made by comparing the current date with the historical growing

season for the area. 

3.2.2 Small Infestation Size

The size of an infestation is an indicator of its viability and hence its future damage

potential.  A small infestation size indicates either an isolated hatching area or a population

with little viability.  Infestations smaller than 500 acres are considered unlikely to lead to a

significant infestation.

3.2.3 Grasshoppers Overwintering as Nymphs

A tract of rangeland invariably contains multiple grasshopper species. Although

virtually all species have only one generation per year, the timing of life-history events and

consumption characteristics vary greatly.  Specifically, grasshoppers overwintering as

nymphs divide their consumption between two growing seasons and consume far less
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during the growing season than grasshoppers overwintering as eggs.  If the majority of the

grasshoppers have the former life history, CARMA determines that little forage loss will

occur unless densities are extraordinarily high.

To determine the proportion of nymphal-overwintering grasshoppers, CARMA

uses case factoring to split the overall population of a case into subcases according to life

history (e.g., overwintering type).  The overall grasshopper population is initially divided

into three observed categories: bandwinged (i.e., grasshoppers having brightly-colored

wings or make a clicking sound in flight); forb or mixed grass/forb feeders (i.e.,

grasshoppers having a round head with a spur throat); and grass feeders (i.e.,

grasshoppers having a slanted face or pointed head, or a round head with no spur throat). 

If the grasshoppers are part of the bandwinged category, CARMA concludes that the

grasshopper population is nymphal-overwintering.  Otherwise, the population is

determined to be egg-overwintering.  For example, the new case set forth in Table 1 is

split into two subcases, SubcaseA and SubcaseB, based on life history.

3.2.4 Inappropriate Grasshopper Phases

To provide a meaningful consultation, the majority of grasshoppers must be

sufficiently developed to determine the extent of the infestation with some certainty (the

infestation potential of a very young population of grasshoppers can fluctuate drastically

based on the weather and disease and is therefore much less predictable), but immature

enough that a significant proportion of lifetime forage consumption remains, making

insecticide application or biological control economically feasible.  Rule-based reasoning is
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used to end consultations involving grasshopper populations whose average

developmental phase is less than 2.5 (i.e., too early) or equal to 7.0 (i.e., too late).

3.3 Determining Forage Competition

If a grasshopper infestation is potentially a problem, CARMA estimates forage

consumption using a library of prototypical cases.  This forage consumption estimate is 

used to predict whether grasshopper consumption will lead to competition with livestock

for available forage.

3.3.1 Prototypical Infestation Cases

The protocol analysis indicated that pest managers estimate forage consumption by

comparing new cases to prototypical infestation scenarios.  These prototypical cases differ

from conventional cases in two important respects.  First, the prototypical cases are not

expressed in terms of observable features (e.g., "Whenever I take a step, I see four

grasshoppers with brightly colored wings fly"), but rather in terms of abstract derived

features (e.g., "Approximately six nymphal overwintering grasshoppers in the adult phase

per square yard").  Second, the prototypical cases are extended in time, representing the

history of a particular grasshopper population over its lifespan.  Each prototypical case is

therefore represented by a "snapshot" at a particular, representative point in time selected

by the entomologist.  In general, this representative point is one at which the grasshoppers

are at developmental phases in which treatment is feasible.  An example prototypical case

appears as Case4 in Table 1.
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3.3.2 Case-Based Prediction of Forage Consumption

As previously mentioned, CARMA uses case factoring to split the overall

population of a case into subcases according to life history (i.e., overwintering as nymphs

or eggs).  To predict overall forage loss, CARMA totals forage loss predictions for each 

subcase.  The following sections detail how CARMA predicts forage loss by using a 

Case4 New case Case4 after projection

SubcaseA SubcaseB

Overwintering type nymph nymph egg nymph

Feeding types grass 10%
mixed 90%

grass 50%
mixed 50%

grass 100% grass 10%
mixed 90%

Average phase 2.0 3.0 7.0 3.0

Density 27.0 36.0 4.0 24.0

Proportion of lifetime
consumption in
critical period

92.7 86.0 12.4 92.7

Date June 8 June 14 June 15

Precipitation normal dry normal

Temperatures normal cool hot

Infest. history high high moderate

Range value low moderately high low

Total area infested 12000 9800 12000

Forage loss 60% (high) ? 60% (high)

Table 1: Case examples.

causal model to assist case-based reasoning in three different ways: temporal projection;

featural adaptation; and critical period adaptation.
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3.3.2.1 Temporal Projection

To predict the forage loss of a subcase, CARMA first retrieves all prototypical

cases whose life history (i.e., overwintering type) matches that of the subcase.  The

prototypical case whose weighted featural difference from the new case is least (as

described in section 4.1) is selected as the best match.  Since prototypical cases are

extended in time but are represented at a particular time, CARMA temporally projects the

best matching prototypical case forwards or backwards to align its average developmental

phase with that of the new subcase.  This requires using the model to simulate grasshopper

attrition, which depends on developmental phase, precipitation, and developmental rate

(which in turn depends on temperature) throughout the interval of the projection. 

CARMA assumes that the grasshoppers within a developmental phase are evenly

distributed throughout the "developmental days" (e.g., normally one week long but

adjusted based on temperatures) within that phase.  Therefore, CARMA breaks the

distribution into daily populations, projects the populations the required number of days

(adjusting the density each day based on attrition), then regroups the daily populations into

their new developmental phases. Attrition rates are adjusted by scalars (one scalar for

precipitation = "wet" and another for precipitation = "non-wet") that are learned via the

algorithms described in Section 4.2.  A graphic example of temporal projection appears in

Figure 6.  Further details of temporal projection appear in Appendix A.

For example, the prototypical case that best matches SubcaseA is Case4, as shown

in Table 1.  Because the developmental phase of Case4 before projection is earlier than

that of SubcaseA, Case4 must be projected forwards in time, causing grasshoppers to be
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Figure 6:  Projection of a prototypical case from Case4 to Case4' to align its
average developmental phase with SubcaseA.

removed from the population due to attrition (i.e., 27.0 grasshoppers per square yard

before projection to 24.0 grasshoppers per square yard after projection).

Temporal projection aligns developmental phases but not necessarily dates.  For

example, the date of Case4 after projection is later than the date of SubcaseA due to a

number of possibilities, including the hatch date of Case4 was later than that of SubcaseA,

or the developmental rate of grasshoppers in Case4 was slower than the rate in SubcaseA. 

As a result, the average developmental phase of the grasshoppers in SubcaseA on June 14

is the same as that of Case4 one day later on June 15.  These dates are used in critical

period adaptation, which is described in section 3.3.2.3.

3.3.2.2 Featural Adaptation

The forage loss predicted by the best matching prototypical case, FL(PC), is
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modified to account for any featural differences between it and the subcase based on the

influence of each of the n features on consumption as represented by a list of featural

adaptation weights A (i.e., A ...A ).  This results in a predicted forage loss for the new1 n

subcase, FL(NC), i.e.,

where QFD(i) is the quantitative difference for feature i between the new subcase and

prototypical case .  For example, a lower temperature value means lower forage losses,

because lower temperatures tend to slow development, increasing grasshopper attrition. 

Thus, the forage loss estimate predicted by Case4 (60%) must be adapted downward to

account for the fact that temperatures in SubcaseA (cool) are lower than in Case4

(normal).   In determining the quantitative feature difference between the new subcase

and prototypical case for qualitative features such as temperature, CARMA computes a

simple difference, i.e., 

where Q(NC,i)  and Q(PC,i) are the quantitative values for feature i in the new

subcase and prototypical case, respectively.  For quantitative features such as density,

proportion of lifetime consumption in the critical period, and total area infested, a

proportional difference is used, i.e.,
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Adaptation weights are set using a hill-climbing algorithm that optimizes

CARMA's predictive accuracy on training instances (discussed in section 4.2).  The

weights used in featural adaptation constitute a linear approximation of the function from

derived case features to consumption amounts in the neighborhood of each prototypical

case.

3.3.2.3 Critical Period Adaptation

As previously mentioned, consumption is only damaging if it occurs during the

growing season of a rangeland habitat.  However, there is a critical forage growing period

within the growing season, when forage losses caused by grasshoppers can not be fully

replaced by forage growth.  The forage loss predicted by a prototypical case must be

adapted if the proportion of the lifespan of the grasshoppers overlapping the critical period

differs between the new case and the prototypical case.  This process, termed critical

period adaptation, is a specific featural adaptation that requires determining the

proportion of lifetime consumption occurring in the critical period based on the

developmental phases of the new and prototypical cases that fall within the critical period

and the proportion of lifetime consumption occurring in these developmental phases.  The

forage loss estimate is then adjusted based on the featural adaptation weight for the critical

period and the difference in the proportion of lifetime consumption in the critical period 
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between the new and prototypical cases.  Details about determining the proportion of

lifetime consumption occurring in the critical period appear in Appendix B.

A graphic example of critical period adaptation appears in Figure 7.  Because

grasshopper development in SubcaseA is ahead of that in Case4 (SubcaseA's

developmental phase on June 14 corresponds to Case4's developmental phase on June 15),

CARMA determines that Case4 applies to more of the critical period than SubcaseA

because it will only reach Day 1 of developmental phase 3 by the beginning of the critical

period (June 17), while SubcaseA will already reach Day 8 of developmental phase 3. 

CARMA uses a model of grasshoppers' rate of consumption at each developmental phase 

to calculate the proportion of lifetime consumption occurring after the beginning of the 

critical period and before the end of the critical period.  For example, only 86.0% of

SubcaseA's consumption occurs during the critical period, whereas 92.7% of Case4's

consumption occurs within this period.  The quantitative feature difference for critical

period adaptation is computed as a proportional difference, therefore CARMA adjusts the

initial consumption estimate by (86.0 - 92.7) / 92.7 = -0.072 multiplied by the adaptation

feature weight for critical period.
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Figure 7:  Critical period adaptation from Case4 to SubcaseA.
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After adaptation, the consumption predictions for each subcase (i.e., populations

of grasshoppers with distinct feeding patterns) are summed to produce an overall

consumption estimate.  In the given case, the sum of predicted consumption of the two

subcases is 90% (86.5+3.4).  Because of variability resulting from the imprecise nature of

rangeland ecosystems, this prediction is converted to the qualitative range, high,

meaning that approximately 60 to 100% of the available forage will be lost.  An interface

window explaining estimated forage loss is shown in Figure 8.  It gives both aggravating

and mitigating factors (i.e., factors tending to increase vs. reduce the forage loss estimate). 

The natural language explanation is produced using conventional template

instantiation techniques.  First, the explanation generator creates the natural language

representation of pertinent qualitative feature values using simple lookup tables (e.g., the

text string for feature value high-mod is "moderately high").  The text string are then

combined with the explanation template.  For example, the template for the first sentence

in the forage loss explanation is

<"From the information you have provided, it is estimated that the grasshoppers

will consume a"  qualitative-forage-loss-string  "percentage of the forage available

for the year or approximately"  quantitative-forage-loss-range-string  "%.">

If the proportion of available forage that will be lost to grasshoppers and the
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Figure 8:  Interface window explaining estimated forage loss.

Figure 9:  Interface window explaining estimated forage competition.

proportion needed for livestock (and wildlife) exceeds 100% of the forage available,

CARMA concludes that competition will occur.  In this example, competition is possible

and the consultation should continue if the proportion of available forage needed by

livestock is greater than 40%.  For example, if forage need is 60%, the expected year-long

competition should range from 0% (i.e., (40+60)-100) to 20% (i.e., (60+60)-100).  A

typical interface window explaining estimated forage competition is shown in Figure 9.
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Figure 10:  Interface window explaining the selection of acceptable treatments.

3.4 Determining Treatment Options

If there will be competition, CARMA applies a set of rules to determine what

possible treatment options are excluded by the conditions of the case.  Some of the

information necessary for determining exclusion is already known from the case features

(e.g., the presence of grasshoppers in the first nymphal instar suggests an ongoing hatch,

thereby excluding malathion and carbaryl bait from consideration).  Other conditions must

be determined from further user input (e.g., "Will it be hot at the time of treatment?" If so,

exclude malathion.).  An interface window explaining the selection of acceptable

treatments appears in Figure 10.  The explanation includes the rules that were used to

exclude treatments.  This explanation is also derived using standard template-instantiation

techniques.

3.5 Treatment Recommendation

For each possible treatment option, CARMA provides estimates of the reduced

probability of future reinfestation and current-year and long-term savings.  From the

estimated savings, CARMA recommends the treatment or treatments that are most

economical.  A typical treatment recommendation window including estimates of future
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Figure 11:  Interface window that recommends a treatment option and provides estimates
of future reinfestation and economic savings.  For carbaryl the dashed line in its second
year reinfestation probability indicates no reduction in infestation probability that year over
no treatment.

reinfestation and economic savings appears in Figure 11.  Notice that this analysis includes

"no treatment" as an option.

3.5.1 Reduced Probabilities of Future Reinfestation

CARMA uses statistical reasoning and the historically derived Markov transitional

probabilities for the infestation location to calculate for each treatment type the total

reduced probability of future reinfestation.  First, CARMA determines whether the

grasshoppers will begin laying eggs before the treatment date.  If the developmental

distribution of the grasshoppers at treatment is dominated by adults, CARMA determines
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that too many eggs will already be laid, and no reduction in the probability of future

reinfestation will result from treatment because eggs are not affected by treatment.

If few eggs will have been laid, CARMA calculates the yearly reinfestation

probabilities for each treatment type based on the historical Markov transitional

probabilities as long as the probability of infestation with treatment for the year is

significantly lower that the probability of infestation without treatment (i.e., until the

benefits of treatment have ended).  The total reduced probability of future reinfestation for

each treatment is calculated by summing each yearly difference between the probabilities

of infestation without and with treatment.

Because the number of grasshoppers that may emerge in future years is often not

directly proportional to the number of eggs laid the current year (i.e., grasshopper

densities are dependent on a great number of factors such that, under ideal conditions,

grasshoppers are capable of expanding or growing from a low population one year to a

very high population the next), transitional probabilities are adjusted only slightly based on

the efficacy of treatments in reducing the number of eggs laid.  The transitional

probabilities are reduced further for those treatments capable of preserving beneficial

organisms.  For example, treatments such as carbaryl bait are designed to be consumed

specifically by grasshoppers and are therefore unlikely to affect biological control agents

such as birds and insects.  Conversely, sprays such as malathion blanket an entire area and

hurt beneficials indiscriminately.

A greater reduction in the transitional probabilities is made for treated infestations

whose total area is quite large, because treatment will tend to reduce the chance that
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Figure 12:  Interface window explaining the economic savings calculations.

grasshoppers from previously untreated areas will migrate into the treated area.  More

details about determining future infestation probabilities appear in Appendix C.

3.5.2 Economic Analysis

For each possible treatment option, CARMA provides estimates of current-year

and long-term savings.  Each analysis involves a range that indicates best to worst case

estimates (negative values indicate a loss).  A typical interface window explaining (i.e.,

showing a trace of) the savings calculations appears in Figure 12.

3.5.2.1 Current-year Savings

For each possible treatment option, CARMA estimates the current-year savings as
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the difference between the value of forage in competition saved by treating and the

treatment cost.  CARMA first computes the amount of pre-treatment forage loss.  This is

done by temporally projecting the developmental distribution of each subcase forwards to

 the user-provided treatment date (often a week or more from the current date).  In a

manner similar to determining the percentage of lifetime consumption occurring within the

critical period, CARMA applies a model of grasshoppers' rate of consumption at each

developmental phase to each subcase to calculate the proportion of lifetime consumption 

occurring before the treatment date.  This proportion is used to scale the year-long forage

loss estimate, resulting in the pre-treatment loss.  The pre-treatment forage loss estimates

for each subcase are summed to produce the total pre-treatment forage loss.  Next,

CARMA estimates the amount of post-treatment forage loss without treatment by

subtracting pre-treatment forage loss from total forage loss.  For example, if total forage

loss is estimated to be 60-100%, and pre-treatment forage loss is estimated to be 2.0-3.3%

(i.e., approximately 20% of the grasshoppers' total consumption will occur before the

treatment date), then the post-treatment forage loss will be 58.0-96.7% (because 80% of

the grasshoppers' lifetime consumption must occur after the treatment date).

For each option, CARMA estimates the amount of post-treatment forage loss with

treatment according to the expected efficacy of the treatment and the post-treatment

forage loss without treatment.  For example, the insecticide carbaryl bait is usually 65 to

80% effective.  If the estimated post-treatment forage loss without treatment is

58.0-96.7%, then at best carbaryl bait should prevent 80% of the 58.0% loss, and at worst

prevent 65% of the 96.7% loss, resulting in a 11.6 to 33.9% post-treatment forage loss.
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CARMA calculates the year-long forage loss for each option by summing pre- and

post-treatment forage loss.  Year-long competition resulting from a treatment option is

calculated by comparing year-long forage loss resulting from the option and forage need. 

The proportion of forage in competition saved is simply the proportion of forage in

competition without treatment minus the proportion of forage in competition with

treatment.  For example, if pre-treatment forage loss is 2.0-3.3% and post-treatment

forage loss is 11.6-33.9%, the year-long forage loss for the option is 13.6-37.2%.  Given a

forage need of 60%, the year-long competition with treatment ranges from (13.6+60)-100

= -26.4 to (37.2+60)-100 = -2.8, which is less than zero, resulting in no competition.  If

the year-long forage in competition without treatment is 20-60%, and the treatment option

will result in no competition, then the expected forage in competition saved by treating is

20-60%.

With the per-unit forage value and range value estimates provided by the user,

CARMA estimates the current-year savings for an option to be the value of forage in

competition that is saved minus the cost of the treatment.  In this example, the per-unit

forage value is $30/AUM (i.e., an animal unit month - the amount of forage necessary to

support a cow and calf for one month) and the estimated range value (or productivity) is

6-10 acres/AUM.  Therefore, the current-year savings ranges from:
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to

3.5.2.2 Long-term Savings

CARMA calculates the savings for future years for each treatment type as the

value of year-long (i.e., total) forage in competition without treatment (taken from the

first year calculations) times the total reduced probabilities of future reinfestation.

Based on the current year savings, CARMA recommends the treatment that is

estimated to save the most under a worst case scenario and the treatment that is estimated

to save the most under a best case scenario.  Usually, the worst and best scenarios

produce the same recommended treatment.  Following the treatment recommendation, the

consultation is complete.

3.6 Multiple-Paradigm Reasoning in CARMA

CARMA implements the process description of entomological

problem-solving by combining a variety of distinct reasoning paradigms.  In particular,

CARMA uses model-based reasoning in three different ways to assist case-based

reasoning for the purpose of predicting forage loss.  First, a model of grasshopper attrition

is used in temporal projection to simulate the attrition that would have occurred during the



42

interval between the developmental distributions of the new case and the prototypical

case.  Second, featural adaptation constitutes a linear approximation of the function from

derived case features to consumption amounts in the neighborhood of each prototypical

case.  Finally, critical period adaptation modifies the prediction estimate to take account of

any difference in overlap between grasshopper lifespans and the critical forage growing

season.

CARMA's implementation of the process model emulates the four characteristics

of human expert performance mentioned above: speed, opportunism, graceful

degradation, and causal explanations.  CARMA is fast because, like a human expert, it can

use compiled knowledge in the form of cases and rules, rather than relying entirely on

computation-intensive simulations.  CARMA is opportunistic in that it can recognize when

no more information is required from the user (e.g., when no accurate prediction can be

made, or when it is too late in the season for treatment to be economical).

Graceful degradation is achieved by CARMA in two ways.  First, CARMA uses

multiple levels of rules ordered by certainty to infer case features.  Thus, precise

information can be used if available, but the absence or inaccuracy of the information does

not cause a catastrophic fall-off in accuracy.  Second, CARMA's use of CBR (i.e.,

case-based reasoning) means that incrementally less precise information will lead to

incrementally less accurate matching and adaptation, but not a catastrophic inability to

provide plausible predictions and advice.

Finally, CARMA is capable of providing causal explanations, notwithstanding its

use of CBR, based on a knowledge of what constitutes variations from normal rangeland
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conditions.  CARMA orders features based on their importance to forage consumption

and the magnitude by which they vary from normal.  An explanation is generated by

describing the features that most aggravate and mitigate forage loss using standard

template-instantiation techniques.
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Chapter 4

Learning Match and Adaptation Weights

CARMA uses two sets of weights in case-based reasoning: match weights (used to

assess the similarity between cases) and featural adaptation weights (used to adapt the

consumption predicted by the best matching prototypical case in light of any featural

differences between it and the subcase).  General domain knowledge, such as the

identifying characteristics and developmental phases of grasshoppers, can be provided by

the domain expert.  By contrast, match and featural adaptation weights must be acquired

by the system itself.

4.1 Match Weights

Match weights are set by determining the mutual information gain between case

features and qualitative consumption categories in a given set of training cases, since

recent research has indicated that this is often the most accurate measure of featural

importance for matching (Wettschereck & Dietterich 1995).  Separate match weights are

computed for each grasshopper overwintering type for seven case features: 
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precipitation, temperature, range value, infestation history,

average developmental phase, density, and feeding type.

Quantitative features, such as density, are converted to qualitative values for

computation of mutual information gain, since small quantitative variations seemed to

have little effect on matching.  The matching feature difference between two individual

feature values is determined by finding the difference between the positions of the values

in an ordered qualitative feature value list.  For example, range value can equal one of the

qualitative values in the ordered set {low, low-moderate, moderate,

high-moderate, and high}, so that the matching feature difference between low and

high is four, the maximum possible difference.  The similarity of two cases is determined

by summing each individual feature difference multiplied by the corresponding match

weight. 

4.2 Adaptation Weights

Featural adaptation weights are set by a hill-climbing algorithm, AdaptWeights,

that incrementally varies the list of adaptation weights A to minimize the

root-mean-squared error (RMSE), i.e., 

for prototypical case library P and match weights M, where PFL(C , P, M, A) isi
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CARMA's predicted forage loss and ExpertPred(C ) is an expert's prediction ofi

consumption for each training case C  in the training set T.  The algorithm fori

AdaptWeights is as follows:

Separate adaptation weights are computed for each grasshopper overwintering

type for eight case features: precipitation, temperature, range value,

infestation history, average developmental phase, density,

feeding type, proportion of lifetime consumption in the

critical period, and total area infested.  CARMA can learn featural

adaptation weights in either of two modes: global, in which a single set of weights are

acquired for the entire case library; or case-specific, in which separate weights are

acquired for each prototypical case.
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In computing the featural adaptation weights, qualitative case features (e.g.,

precipitation = "Dry") are converted into quantitative values based on the position of the

value in an ordered qualitative feature value list.  An adaptation feature difference is

computed as the difference between the quantitative feature values of the two cases.  The

consumption prediction of the matching prototypical case is adjusted by the sum of the

adaptation feature differences multiplied by the adaptation weights for each feature. 
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Chapter 5

Evaluation of CARMA

The design of CARMA's forage consumption prediction component is based on

the hypothesis that integrating model-based and case-based reasoning can lead to more

accurate forage consumption predictions than the use of either technique individually. 

This hypothesis is based on the observation that neither the causal model nor the empirical

data available for rangelands are individually sufficient for accurate prediction.  To test

this hypothesis, the configuration of CARMA with the highest predictive accuracy had to

be determined.  Sections 1 through 3 detail tests of CARMA and the subsequent

modifications made to CARMA based on these findings that lead to the final

configuration.  The testing of the integration of  model-based and case-based reasoning is

described in section 4 and discussed in section 5.  A comparison of case-specific and

global adaptation weights is given in section 6.  CARMA demonstrates that integrating

various reasoning paradigms can lead to a useful advising system.  CARMA's advice is

evaluated in section 7 by comparing it to the advice given by Wyoming entomologists and

pest managers.  Section 8 summarizes the findings.
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5.1 The Initial System Configuration (CARMA )A

CARMA was originally implemented as a purely case-based reasoning system

using the PROTOS case-based reasoning shell (Porter, Bareiss, & Holte 1990).  However,

this implementation proved to be a poor model of expert problem solving in this domain. 

PROTOS is designed to produce a diagnostic category as a solution.  However, the

protocol analysis indicated that a solution should consist of a treatment recommendation

supported by an explanation in terms of causal, economic, and pragmatic factors, including

a numerical estimate of the proportion of forage consumed and a cost-benefit analysis of

the various treatment options.  The rule-based and model-based steps of expert problem

solving set forth in Chapter 2, which are necessary for such solutions of this nature, can't

be accommodated within a purely case-based reasoning approach.  The focus of the

CARMA project therefore turned to integrating the multiple problem solving paradigms

used by human experts.

Since the protocol analysis indicated that pest managers estimate forage

consumption by comparing new cases to prototypical infestation scenarios, a set of

prototypical cases was elicited from an entomologist who participated in the protocol

analysis.  An initial set of prototypical cases was obtained by asking the expert what

stereotypical situations were used as a standard for comparison with the problem

situations addressed by the expert in the protocol analysis.  Additional prototypical cases

were obtained by presenting the expert with a wide range of artificial problems and asking

the expert to identify stereotypical situations that would be most relevant to forage

consumption predictions in those situations.  The resulting prototypical case library
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Critical period adjustment was initially an adaptation technique separate from featural4

adaptation that received no benefit from training.  It was equivalent to critical period
adaptation with a featural adaptation weight of 1.0 such that any forage loss outside of the
critical period was discounted.

(ProtoL) contained eight cases - two nymphal overwintering cases and six egg

overwintering cases.  A separate experimental set, Set1, consisted of 15 cases generated

by the same expert as ProtoL.  These initial cases contained qualitative rather than

quantitative forage loss predictions.  This initial configuration of CARMA is termed

CARMA .A

5.1.1 Tests of CARMAA

CARMA  was initially tested to estimate the performance of its consumptionA

prediction module and to determine the relative contributions of three model-based

adaptation techniques (i.e.,  featural adaptation, temporal projection, and critical period

adjustment ) to predictive accuracy.  The evaluation of CARMA  was complicated by the4
A

absence of empirical data against which to measure CARMA 's predictions.  Therefore,A

expert human judgments were used as an external standard.  Set2 containing 48 test cases

was thus created with randomly generated features and forage loss predictions estimated

by a second entomologist.

To determine the contribution of model-based knowledge, an ablation study was

performed in which the full CARMA  consumption prediction module was compared toA

CARMA  minus the model-based components and to two different inductive methods:A

decision-tree induction using ID3 (Quinlan 1986) and linear approximation using QR
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Estimated mean quantitative error is a conservative estimate based on a conversion of5

Set2 forage loss predictions from qualitative to quantitative values.

factorization (Hager 1988) to find a least-squares fit to the feature values and associated

predictions of the training cases.

CARMA  was tested using ProtoL as its case library.  CARMA 's global featureA A

weights, used both in case matching and in adaptation, were tuned using an early version

of the AdaptWeights hill-climbing algorithm to optimize CARMA 's overall predictiveA

accuracy through the ProtoL case library on Set1.  The ablated versions of CARMA  usedA

the same global feature weights and case library as the full system.  ID3 and linear

approximation were given ProtoL and Set1 as training instances.

The accuracy of each approach was tested by comparing its forage loss prediction

for each case in Set2 with the prediction of the expert.  The qualitative difference between

two forage loss predictions was calculated as the number of categories by which the

predictions differ in the ordered set {low, low-moderate, moderate,

high-moderate, and high}, so that low differs from high by four categories, the

maximum possible qualitative difference.  The results, which appear in Table 2, include the

mean qualitative error per test case (i.e., the mean qualitative difference between the

prediction of the approach and the expert over all the test cases) and the estimated mean

quantitative error per test case  (based on a scale of 0% to 100% for quantitative forage5

loss predictions).  The performance of CARMA  is shown in row two.  Rows three andA

four show, respectively, CARMA  with featural adaptation removed (CARMA  - CPA)A A

and CARMA  with critical period adjustment and temporal projection removedA
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Under this approach, cases are first factored into populations with distinct overwintering6

types, nearest-neighbor prediction (1-NN) as described in Cover & Hart (1967) is
performed for each population, and the resulting consumption predictions for all
populations are summed.

(CARMA  - CPA, P).  The performance of factored nearest-neighbor predictionA

(factored-NN), i.e., CARMA  with projection, featural adaptation, and critical periodA

adjustment removed,  is shown in row five.6

Mean qualitative
error

Estimated mean
quantitative error

CARMAA 0.42 14.9

CARMA  - FAA 0.79 21.6

CARMA  - CPA, PA 0.83 22.3

CARMA  - FA, CPA,A

P (factored-NN)
0.85 22.0

ID3 1.00 25.2

Linear approximation 1.15 30.1

Table 2:  Summary of CARMA  test results.  P, FA, and CPA represent temporalA

projection, featural adaptation, and critical period adjustment, respectively.

CARMA 's average qualitative error was 0.42.  Removal of the various model-A

based adaptation techniques significantly degraded CARMA 's performance.  CARMA 'sA A

error rate was almost doubled by removal of featural adaptation (0.79), removal of critical

period adjustment and temporal projection (0.83), or by removal of all three (0.85). 

CARMA  was not tested with case factoring disabled.  However, ID3's performance onA

unfactored cases, 1.00, was lower than CARMA 's performance with all model-based A
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reasoning other than case factoring disabled, suggesting that case factoring is also an

important requirement for performance in this domain.

Featural adaptation assumes that the function for forage consumption can be

approximated by a linear equation in the neighborhood of prototypical cases.  Given the

large contribution of featural adaptation to CARMA 's performance, it seems reasonableA

to wonder whether the forage consumption function can be globally approximated by a

linear equation.  However, the performance of linear approximation (1.15) indicates that a

linear function for consumption as a function of case features is a poor predictor.

5.1.2 Initial findings

The most important weakness of the CARMA  implementation of forageA

consumption prediction module was that it used a single set of global feature weights for

both matching and featural adaptation.  Even if the consumption function can be

approximated by a linear function in the neighborhood of prototypical cases, as assumed in

featural adaptation, it doesn't follow that the same linear function is appropriate for all

prototypical cases.   Indeed, the observed poor performance of global linear

approximation, shown in Table 2, suggested that linear approximations, and therefore

feature weights, should be specific to individual prototypical cases.   Moreover, while it is

plausible that feature weights for matching should be the same as feature weights for

adaptation, this hypothesis needed to be tested.  Thus, two important research issues were

to compare case-specific and global featural adaptation weights and to test the effect of

separating match and adaptation weights.
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Another important limitation of this initial evaluation was that the consumption

predictions associated with Set2 were produced by a different entomologist than the

entomologist from whom the prototypical cases (ProtoL) and Set1 were elicited.  As a

result, there may have been inconsistencies between the testing set and the library of

prototypical cases.

5.2 Greater Weighting Flexibility and Multiple Experts (CARMA )B

Based on the concerns from testing CARMA , match and adaptation weights wereA

separated.  This new configuration of CARMA was called CARMA .  As with the initialB

tests, expert human judgments were used as an external standard against which to measure

CARMA 's predictions.  A complication introduced by the use of expert human judgmentsB

as an evaluation standard is the possibility that in making consumption predictions human

experts fail to use of all aspects of the model of grassland ecology.  To test this possibility,

we performed an ablation study similar to the tests in section 5.1 in which we tested the

effect on prediction accuracy of removing each form of adaptation knowledge from

CARMA .B

To obtain a representative sample of expert opinions, questionnaires were sent to

20 entomologists and pest managers recognized for their work in the area of grasshopper

control.  Each expert received 10 hypothetical cases (located at the northern Wyoming

border) randomly selected from a complete set of 20 cases.  The descriptions of the 20

cases contained at least as much information as is typically available to an entomologist

from a rancher seeking advice.  The questionnaire asked the expert to make several
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Figure 13:  Range of forage loss predictions by 13 experts on 20 test cases.

predictions about the case, including the predicted quantitative forage loss.  A total of 13

recipients of the questionnaire responded.  The resulting experimental case sets consisted

of 13 sets of expert responses containing 10 cases each (the Expert Sets),  and eight sets

filled in by Wyoming experts containing 10 cases each (the Wyoming Expert Sets).

5.2.1 Expert Prediction Variation

Suprisingly, there was a very wide variation  in consumption predictions among the

experts over the set of 20 cases.  Figures 13 and 14 show the variation in consumption

predictions among the 13 experts (from 25 to 90%) and 8 Wyoming experts (from 5 to
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Figure 14:  Range of forage loss predictions by eight Wyoming experts on 20 test cases.

70%), respectively.  As expected, the eight Wyoming experts were more consistent in

their forage consumption predictions.  However, while the predictions of the eight

Wyoming experts are not as widely ranging as the entire set of 13 experts, it was not

determined whether this reduced variation resulted solely from a smaller set size (i.e.,

other combinations of eight experts would result in less variation than the Wyoming

experts), or that a greater consensus results from Wyoming experts familiar with

Wyoming cases.  Nonetheless, the very wide variation in consumption predictions among

the experts furthered concerns (from CARMA ) that inconsistencies (or inaccuracies) areA

likely when CARMA is trained on the cases predicted by one expert but tested on cases

from another expert.
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5.2.2 Experimental Design

In an effort to avoid inconsistencies between training and testing sets, each

predictive method was tested using a series of leave-one-out tests in which a set of cases

(S) from a single expert was split into one test case (C) and one training set (S - C).  The

methods were trained on the forage loss predictions of the training set and tested on the

test case.  This method was repeated for each case within the set (S).  The forage loss

predictions (between 0% and 100%) represent the proportion of available forage that

would otherwise be available for livestock but will instead be consumed by grasshoppers. 

CARMA  was tested using a protocol under which each set of training cases is used asB

CARMA's library of prototypical cases.  This protocol is implemented in

LeaveOneOutSpecificTest and LeaveOneOutGlobalTest, which perform

the leave-one-out tests for the specific and global adaptation weights schemes,

respectively.  Both procedures call AdaptWeights, the hill-climbing algorithm

described above.  LeaveOneOutSpecificTest calls AdaptWeights with a

prototypical case library containing only one case.
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5.2.3 Ablation Experiment

As with CARMA  to determine the contribution of the various forms ofA

model-based adaptation to CARMA 's predictive accuracy, an ablation experiment wasB

conducted in which the performance of the full CARMA  system was compared toB

CARMA 's performance with various adaptation mechanisms disabled on both the ExpertB

Sets and Wyoming Expert Sets.  The second column of Table 3 shows CARMA 'sB

average root-mean-squared error using case specific weights (CARMA -specific). B

Columns three and four show CARMA -specific with, respectively, projection and criticalB

period adjustment removed, and column five shows CARMA  with featural adaptationB

removed.  The performance of factored nearest-neighbor prediction (factored-NN) is

shown in column six.

Specific weights No featural adaptation Global weights

Full Minus
projection

minus
CPA

minus
featural

adaptation

minus FA, P, CPA
(factored-NN)

Full minus
CPA

Expert sets 22.6 21.3 17.3 29.8 20.5 23.2 18.7

Wyoming
expert sets

24.3 22.5 17.6 30.1 21.2 27.1 21.1

Table 3:  CARMA 's average percentage root-mean-squared error across 13 Expert SetsB

and eight Wyoming Expert Sets with various adaptation methods removed.
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These data show that full CARMA -specific actually performs worse thanB

factored-NN on both the Expert Sets and Wyoming Expert Sets.  Removing featural

adaptation makes performance still worse, while removing projection improves

CARMA 's performance beyond the full configuration.  Removing critical periodB

adjustment is necessary before CARMA  performs better than factored-NN.B

Columns seven and eight show CARMA  using global weights (CARMA -global). B B

As with CARMA -specific, CARMA -global was more accurate with critical periodB B

adjustment removed.  However, CARMA -global minus critical period adjustment, whileB

more accurate than NN, is less accurate than CARMA -specific with critical periodB

adjustment removed.  Each configuration of CARMA  was more accurate on the ExpertB

Sets than on the Wyoming Expert Sets.

In summary, the ablation experiment tentatively showed that case-specific

adaptation weights led to better performance than global adaptation weights.  The

experiment also showed that featural adaptation increased predictive accuracy, but

projection and critical period adjustment decreased accuracy.  This suggested that

projection and critical period adjustment do not accurately reflect the problem-solving

behavior of human experts in this predictive task.  However, strong arguments could be

made for the inclusion of both of these model-based techniques.  First, the expert who

generated the initial prototypical case library (ProtoL) continued to claim that critical

period adjustment (i.e., discounting forage loss outside of the critical period) was a valid

technique.  Second, removing temporal projection from CARMA would create severe

implementation difficulties, because it would require a much larger prototypical case
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library so that the developmental phase of a new case would always be properly matched. 

Simply discounting developmental phases would be quite counterintuitive for the

following reason.  It was already known that grasshopper density is typically the most

important case feature.  However, the importance of density is not completely independent

of the developmental phase.  For example, it is known that 30 grasshoppers in the third

nymphal instar are much more potentially damaging than 30 grasshoppers in the first instar

since grasshoppers in the third instar consume more forage due to their larger size and are

less likely to be lost due to attrition.  In this example it is important to know that

grasshopper densities decrease over time as grasshoppers progress through each

developmental phase.

The fact that CARMA  is more accurate on the Expert Sets than the WyomingB

Expert Sets is also peculiar.  A reasonable assumption is that the best predictions about

Wyoming grasshopper infestations come from experts within Wyoming as they typically

have the most experience with these infestations.  Since the goal of the CARMA project is

provide the best advice about Wyoming grasshopper infestations, CARMA  clearly shouldB

be tailored to emulate the predictions of the Wyoming experts rather than the entire set of

experts.  In addition, since many model-based parameters within CARMA  are based onB

conditions typical within Wyoming (i.e., conditions most familiar to Wyoming experts) it

seems that CARMA 's predictive component is initially biased (before training) towardsB

Wyoming experts, and would be most likely through training to resemble their predictions

than those of other experts.  CARMA 's inaccuracy on the Wyoming Expert Sets is B
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perhaps just a side effect of an incorrectly configured forage consumption prediction

module.

Unfortunately, a full comparison between CARMA  and CARMA  is not possibleB A

because CARMA  was evaluated according to leave-one-out tests on the predictions ofB

one expert, while CARMA  was evaluated by training it on the predictions of one expert,A

then testing it on the predictions of another expert.  In addition, CARMA 's test resultsB

are in terms of root-mean squared error, while CARMA 's results are in terms ofA

estimated mean quantitative error (normally much lower than the root-mean squared

error).  Nonetheless, it appears that CARMA 's predictive accuracy improved substantiallyB

over CARMA 's accuracy since root-mean-squared error is typically much higher thanA

mean error, especially the conservative mean quantitative error estimates for CARMA . A

This improvement suggests that match and adaptation weights should indeed be separated. 

These findings warranted more tests of specific and global adaptation weights and the

various model-based techniques, improvements to critical period adjustment and temporal

projection, and improvements to the predictive accuracy on the Wyoming test cases.

5.3 Learning Model-based Adaptation Parameters (CARMA)

In tests of CARMA  removing both temporal projection and critical periodB,

adjustment led to an increase in predictive accuracy, even though both seem to be model-

based knowledge that is used by experts.  It was hypothesized that each expert views

grasshoppers' developmental progress over a lifetime and critical period consumption

somewhat differently, such that the experts' predictions are simply inconsistent with
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temporal projection and critical period adjustment in their initial hard-coded form. 

Therefore, CARMA was revised to include a technique called  model-based parameter

learning (MPL) in which parameters are included in the hill-climbing training to fully

optimize temporal projection and critical period adjustment on the training cases.  

In this configuration, called simply CARMA, critical period adjustment is replaced

by adding proportion of lifetime consumption in the critical

period as an adaptation feature and learning its adaptation weight.  Temporal projection

is included in MPL by learning parameters that scale the attrition values.  Learning zero

(0) values for both the critical period adapation weight and the projection parameters is

equivalent to disabling critical period adaptation and temporal projection, respectively,

while learning values of 1 is equivalent to fully enabling both adaptation techniques.

As described in section 5.3.1 CARMA was first tested to determine whether MPL

could lead to an improvement in predictive accuracy over CARMA .  During these tests,B

it was discovered that doing temporal projection after matching (instead of before where it

had been done in CARMA  and CARMA ) might lead to improvements.  Tests of thisA B

approach are described in section 5.3.2.  Ablation tests were then performed to test the

effect on predictive accuracy of removing each form of adaptation knowledge from

CARMA.  Tests comparing the configuration of CARMA with the highest predictive

accuracy with purely model-based and purely empirical reasoning are described in section

5.4.

These tests use the same data sets as CARMA  (i.e., the Expert Sets and theB

Wyoming Expert Sets) plus a set of 20 cases representing the median of the experts'
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prediction on each case (the Median Set), and a set of 20 cases representing the median of

the Wyoming experts' prediction on each case (the Wyoming Median Set).  The median

sets were derived in an effort to capture the expertise evident in the individual sets in one

set.  However, because of the extreme variability in experts' opinions for each case, it is

unlikely that the median results in anything very meaningful.  In fact, taking the median of

the predictions for each case should cause a loss of variability from case to case, and in

effect cause a complex function curve to be tremendously flattened.  Leave-one-out tests

were performed on these sets using the same methods (algorithms) as the tests of

CARMA .B

5.3.1 Model-based Parameter Learning Experiment

An initial experiment was performed in which CARMA  minus critical periodB

adjustment was compared to: 1) CARMA and 2) CARMA with projection parameter

learning disabled (i.e., CARMA  with critical period adjustment consumed by featuralB

adaptation).  The purpose of this experiment was to determine if model-based parameter

learning critical period featural adaptation weight could increase predictive accuracy

beyond simply disabling critical period adjustment.  Table 4 shows the average root-mean-

squared error of CARMA  minus critical period adjustment (CARMA  - CPA), CARMAB B

minus projection parameter learning (CARMA - PPL), and CARMA, using both case-

specific and global adaptation weights.  The third column of Table 4 shows the

performance of various CARMA configurations on the Wyoming Experts Sets - the sets 



64

upon which CARMA needs to be most accurate.  Column four shows the performance on

the Expert Sets.  The results for the median sets appear in columns five and six.

Configuration of
CARMA

Wyoming
expert sets

Expert
sets

Wyoming
Median Set

Median
Set

Specific weights CARMA  - CPAB 17.6 17.3

CARMA - PPL 13.9 17.3 8.6 10.6

CARMA 13.6 15.9 9.7 11.4

Global weights CARMA  - CPAB 21.1 18.7

CARMA - PPL 17.6 18.9 10.4 12.0

CARMA 15.0 15.1 10.6 10.8

Table 4: Average percentage root-mean-squared error across eight Wyoming Expert Sets,
13 Expert Sets, the Wyoming Median Set and the Median Set for various configurations
of CARMA.

These data show that for the Wyoming Expert Sets CARMA minus projection

parameter learning outperforms CARMA  minus critical period adjustment by 21.0% forB

case-specific adaptation weights and 16.6% for global adaptation weights.  This suggests

that replacing critical period adjustment by critical period adaptation is a desirable change. 

On the Expert Sets, neither configuration is noticeably better.

Adding projection parameter learning further improves CARMA's predictive

accuracy on the Wyoming Expert Sets by 2.2% for specific weights and 14.8% for global

weights, and on the Expert Sets (8.1% - specific and 20.1% - global).  Both results

support the addition of projection parameter learning.

As expected, all configurations of CARMA (i.e., with and without projection

parameter learning and with global or case-specific weights) are more accurate on the
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Wyoming Expert Sets than the Expert Sets.  CARMA's relatively high accuracy on the

median sets (8.6% to 10.6% for the Wyoming Median Set and 10.6% to 12.0% for the

Median Set) suggests that taking the medians of the experts results in more easily

predictable sets.

5.3.2 Match Projection Experiment

In CARMA  and CARMA  prototypical cases are temporally projectedA B

immediately before case matching takes place.  This temporal projection is initially limited

to 2 weeks in the match phase to bias matches towards cases with similar developmental

phases.  Before the adaptation stage, any remaining misalignment in developmental phases

is eliminated by continuing temporal projection until the developmental phases are

completely aligned.  Temporal projection results in a modification of the densities and

developmental distributions within the prototypical cases.  However, since match weights

are set by determining the mutual information gain between case features and qualitative

consumption categories of prototypical cases in their unprojected form, using match

weights derived from unprojected prototypical cases on projected prototypical cases could

cause inconsistencies such that the incorrect prototypical case would match the new

subcase.  To test this hypothesis, configurations of CARMA were compared in which

temporal projection was performed before and after case matching.

Table 5 shows the average root-mean-squared error of CARMA with projection

occurring before matching (CARMA) and CARMA with projection after matching

(CARMA - MP), using both case-specific and global adaptation weights.  Columns three
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and four show the performance of various CARMA configurations on the Wyoming

Experts Sets and Expert Sets, respectively.

The results show that delaying temporal projection until after case matching

improves CARMA's performance for both the Wyoming Expert Sets (2.2% - specific and

5.3% - global) and the Expert Sets (0.6% - specific and 1.3% - global).  Although

tentative due to the marginal improvement, the results suggest that slight inconsistencies

may result when projecting prototypical cases before matching and that projection should

therefore be performed afterwards instead.

Configuration of
CARMA

Wyoming
Expert Sets

Expert
Sets

Wyoming
Median Set

Median
Set

Specific weights CARMA 13.6 15.9 9.7 11.4

CARMA - MP 13.3 15.8 10.1 11.2

Global weights CARMA 15.0 15.1 10.6 10.8

CARMA - MP 14.2 14.9 10.0 10.8

Table 5: Average percentage root-mean-squared error across eight Wyoming Expert Sets,
13 Expert Sets, the Wyoming Median Set and the Median Set for CARMA with and
without match projection.

5.3.3 Ablation Experiment

To determine the contribution of the various forms of model-based adaptation to

CARMA's predictive accuracy, the last in the series of ablation experiments was

performed in which the performance of CARMA was compared to CARMA's

performance with various adaptation mechanisms disabled.  The second row of Table 6

shows CARMA's average root-mean-squared error using case specific weights
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(CARMA-specific).  Row three shows CARMA-specific with projection removed and row

six shows CARMA with featural adaptation removed.  Rows four and five show CARMA

using global weights (CARMA-global).  The performance of factored nearest-neighbor

prediction (factored-NN) is shown in row seven.

Configuration of
CARMA

Wyoming
expert sets

Expert
sets

Wyoming
Median Set

Median
Set

Specific weights CARMA 13.6 15.9 9.7 11.4

CARMA -  P 15.6 17.7 10.9 10.5

Global weights CARMA 15.0 15.1 10.6 10.8

CARMA - P 15.4 17.7 10.7 11.3

No featural
adaptation

CARMA - FA 23.4 21.5 29.0 24.1

CARMA - FA, P
(factored-NN)

21.1 20.7 22.8 21.0

Table 5: Average percentage root-mean-squared error across 13 Expert Sets and 8
Wyoming Expert Sets for various configurations of CARMA.

These data show that for the Wyoming Expert Sets and Expert Sets using both

specific and global adaptation weight methods the full CARMA configuration is the best. 

Removing projection and/or featural adaptation from CARMA leads to a noticeable

decrease in performance.

In summary, the ablation experiment showed that projection and featural

adaptation each increased predictive accuracy.  In testing the contributions of model-based

and case-based knowledge to predictive accuracy CARMA was therefore tested using

both projection and featural adaptation.
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ID3 classified cases into 10 qualitative consumption categories representing the midpoints7

(5, 10, 15, ... , 95) of 10 equally sized qualitative ranges.  ID3's error was measured by the
difference between the midpoint of each predicted qualitative category and the expected
quantitative consumption value.

5.4 CARMA vs. Empirical and Model-based Approaches

To test the hypothesis that integrating model-based reasoning and case-based

reasoning can lead to more accurate predictions than the use of either technique

individually, CARMA's empirical and model-based knowledge components were

separated, tested in isolation, and compared to the performance of the full CARMA

system under both global and case-specific adaptation weight modes.

CARMA's empirical component was evaluated by performing leave-one-out-tests

for a nearest-neighbor approach and two other inductive approaches that used CARMA's

empirical knowledge: decision tree induction using ID3  and linear approximation.7

The predictive ability of CARMA's model-based component in isolation was

evaluated by developing a numerical simulation based on CARMA's model of rangeland

ecology.  This simulation required two forms of knowledge implicit in CARMA's cases:

the forage per acre based on the range value of the location, and the forage typically eaten

per day per grasshopper for each distinct grasshopper overwintering type and

developmental phase.  The steps of the numerical simulation are as follows:

1. Project each grasshopper population back to beginning of the growing season.

2. Simulate the density and developmental phases for each overwintering type

through the end of the critical period growth season based on the precipitation and
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temperature given in the case. 

3. Calculate the forage eaten per day per acre based on the grasshopper density per

acre and the forage eaten per day per grasshopper for each overwintering type and

developmental phase as affected by temperature.

4. Convert the total forage consumed to the proportion of available forage consumed

based on the forage per acre.

The effect of temperature on consumption (as a result of changing metabolism

rate) was represented by multiplying a coefficient (determined from a lookup table indexed

by temperature) by the forage eaten per day per grasshopper for each overwintering type. 

The numerical simulation was trained by hill-climbing on temperature-based coefficients to

maximize the predictive accuracy on the training cases.

Predictive method Wyoming
expert sets

Expert sets Wyoming
median set

Median
set

Specific
weights

CARMA 13.6 15.9 9.7 11.4

CARMA - MP 13.3 15.8 10.1 11.2

Global
weights

CARMA 15.0 15.1 10.6 10.8

CARMA - MP 14.2 14.9 10.0 10.8

Empirical
only

CARMA - FA, P
(factored-NN)

21.1 20.7 22.8 21.0

ID3 34.9 30.5 35.2 32.8

Linear appr. 25.6 28.0 11.9 13.3

Model-
based only

Numerical
simulation

29.6 28.8 27.9 27.6

Table 6: CARMA's average percentage root-mean-squared error across 13 Expert Sets,
eight Wyoming Expert Sets, the Expert Median Set and the Wyoming Expert Median Set
compared with purely empirical and purely model-based approaches.
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The accuracy of each approach was tested using leave-one-out testing for each of

the eight Wyoming Expert Sets and the 13 Expert Sets.  The results, which appear in

Table 6, include the root-mean-squared error for each of the methods.

5.5 Discussion of Integration

The results of the integration experiment provide initial confirmation for the

hypothesis that integrating model-based and case-based reasoning through model-based

adaptation leads to more accurate forage consumption predictions than the use of either

technique individually.  The root-mean-squared error for CARMA-specific on the

Wyoming Expert Sets (13.6) is 35.5% lower than for the nearest-neighbor approach

(21.1) and 46.9% lower than for linear approximation (25.6).  The error rates for the other

approaches on this data set were higher than for nearest-neighbor and linear

approximation: numerical simulation (29.6) and ID3 (34.9).  This initial confirmation is

tentative because the low level of agreement among experts and absence of any external

standard gives rise to uncertainty about what constitutes a correct prediction.  However,

this validation problem appears to be an inherent property of the domain of rangeland pest

management.

Consumption prediction can be viewed as approximating a function from derived

case features to consumption predictions (a consumption function).  Prototypical cases

constitute representative points in feature space for which function values are known.  The

prototypical cases can be used to induce a representation of the function as a decision tree

(e.g., ID3) or a numerical function (e.g., linear approximation).  The poor performance of
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ID3 and linear approximation suggests that the biases of these inductive methods are

poorly suited to the consumption prediction task.  The high performance of linear

approximation on the median sets (11.9 - Wyoming Median Set and 13.3 - Median Set) 

suggests that taking the median of the predictions for the expert sets causes the complex

consumption function curve to be tremendously flattened, and as a result it is much more

easily predicted by linear approximation.

Numerical simulation can be used to derive individual values for the function.

However, the incompleteness of available models of rangeland ecology limits the accuracy

of this approach.

A pure nearest-neighbor approach implicitly assumes that the consumption

function is constant in the neighborhood of prototypical cases.  CARMA's model-based

adaptation approach uses a model of rangeland ecology to attempt to approximate the

consumption function in the neighborhood of individual prototypical cases.  For example,

projection consists of simulation through the temporal interval necessary to align the

developmental phases of two cases.  Although the model may be insufficient in itself for

accurate consumption prediction, it may greatly improve the accuracy of nearest-neighbor

prediction.

5.6 Trainability of Case-specific vs. Global Adaptation Weights

The poor performance of linear approximation (25.6 as compared to 21.1 for the

nearest-neighbor approach) indicates that no single linear function can accurately predict

consumption.  Thus, it is unlikely that a single linear function is sufficient to adapt the
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consumption prediction of every case.  CARMA-specific does not depend on the

assumption that the consumption function can be approximated by a single linear equation

in the neighborhood of every prototypical case.  It was therefore hypothesized that

CARMA-specific would outperform CARMA-global because the latter depends on the

assumption that the consumption function can be approximated by a single linear equation

in the neighborhood of every prototypical case.

However, the fact that case-specific adaptation weights exhibit only marginally

better predictive accuracy than global weights in the leave-one-out tests suggests

overfitting on a small data set.  The poor performance of case-specific adaptation is likely

the result of an insufficient number of training cases to properly set the adaptation weights

of every prototypical case.  For individual expert sets of 10 cases each,  leave-one-out

tests train on nine cases and test on one, as described in section 5.2.1.  The adaptation

weights for the each training case are determined by maximizing the predictive accuracy

on the other eight training cases.  In the test cases, eight of the features used in adaptation

have variable or nonconstant values (i.e., precipitation, temperature,

range value, infestation history, average developmental phase,

density, feeding type,  and proportion of lifetime consumption

in the critical period) so eight separate adaptation weights must be learned. 

These variables can be viewed as giving rise to eight linear equations with eight

unknowns.  However, based on the poor performance of linear approximation, the forage

consumption function is obviously not linear.   Combining the eight adaptation weights

with the projection parameters further complicates the issue.
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For such a complicated, non-linear function, a broader coverage of the feature

values is necessary.  However, eight training cases can't possibly come close to covering

the 16 possible values for the qualitative features (e.g., precipitation,

temperature, range value, and infestation history can take on a total

of 16 possible different values), let alone the possible interdependent combinations of

these values.  Coverage of the quantitative feature values must also be considered.  As a

result, it is likely that adaptation weight learning (both global and case-specific) requires a

much broader coverage of the features values than is present in only 10 test cases,

particularly for case-specific weights.

In an effort to determine the potential accuracy of the various configurations of

CARMA were they to be trained on a more ideal number of cases, trainability (i.e., the

ability of a configuration to be fully trained on a set of cases) tests were performed on the

different expert sets.  For each expert set, the configurations of CARMA were trained on

the entire set of 10 cases, then tested on the same set of cases.  The results appearing in

Table 7 include the results on both the Wyoming Expert Sets and the Expert Sets.  The

measure of trainability and the increase in error from training on the entire sets to

performing leave-one-out tests are shown.

The results of the trainability tests show that for each configuration of CARMA,

case-specific adaptation weights are capable of greater accuracy than global weights on

both the Wyoming Expert Sets and Expert Sets.  However, in the leave-one-out tests on

the Wyoming Expert Sets, the accuracy of case-specific weights increases only marginally

over global weights.  On the Expert Sets the performance of case-specific weights is



74

usually lower than global weights.  The subpar performance of case-specific weights is

particularly evident by the tremendous increase in error from the trainability tests to the

leave-one-out tests (93% to 147%) as compared to global weights (52% to 67%).  The

rise in error for the case-specific method suggests an insufficient coverage of feature

values due to a low number of training cases, which leads to an overfitting of the

adaptation weights.  For global adaptation, overfitting appears to be less of a problem.  In

more general terms, it appears that CARMA-specific requires a larger number of cases to

accurately set the adaptation weights than CARMA-global.

Wyoming Expert Sets Expert Sets

CARMA
predictive
method

Adapt.
weight
method

Trainability Leave-
one-out

Increase
in error

(%)

Trainability Leave-
one-out

Increase
in error

(%)

CARMA specific 5.5 13.6 147 6.5 15.9 145

global 9.9 15.0 52 9.8 15.1 54

- MP specific 5.5 13.3 142 6.5 15.8 143

global 9.3 14.2 53 9.8 14.9 52

- PPL specific 7.2 13.9 93 8.0 17.3 116

global 10.6 17.6 66 11.3 18.9 67

- PPL, MP specific 6.6 15.2 130 7.5 16.1 115

global 9.4 15.7 67 10.9 18.0 65

- P specific 7.0 15.6 123 8.0 17.7 121

global 9.9 15.4 56 11.3 17.7 57

Table 7:  Average percentage root-mean-squared error for various configurations of
CARMA through both trainability tests and leave-one-out tests across eight Wyoming
Expert Sets, 13 Expert Sets, the Wyoming Median Set and the Median Set.
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5.7 CARMA as a Useful Advising System

Producing accurate predictions about grasshopper forage consumption through the

integration of model-based and case-based reasoning in CARMA is a very important step

in providing useful advice about grasshopper infestations.  As described in Chapter 2, a

complete consultation resulting in a treatment recommendation requires integrating the

forage consumption module with the remaining expert problem solving steps.  The design

of CARMA was based on the hypothesis that integrating various reasoning paradigms can

lead to a useful advising system.  To test this hypothesis, CARMA-specific with temporal

projection occurring after match projection was trained on the Wyoming Median Set and

its treatment recommendations were compared to those of the eight Wyoming experts on

the 20 test cases.  Table 8 shows the number of times the experts chose each treatment

type for each test case.  CARMA's selection is marked by a *.

The results in Table 8 show that CARMA's treatment recommendations are fairly

indistinguishable from the experts, failing to match at least one expert in only one of 20

test cases (test case 3).  This suggests that CARMA is a reasonable model of the experts. 

However, the results also show that CARMA's treatment recommendations match the

majority selection only 70% of the time (14 / 20).  If "no treatment" was selected each

time, which CARMA does for 90% of the test cases, it would still match the majority

selection 60% of the time.

As had been previously noted, training CARMA on the median forage loss

predictions of the Wyoming experts causes a loss in variability from case to case and a

flattening of the forage loss function curve.  The average forage loss prediction in the
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Wyoming Expert Sets in 51.1%, while the average forage need is 51.5%, meaning that on

average grasshoppers will compete with livestock for only 2.6% of the total available

forage.  This low level of competition would only be treated in economically justifiable

Number of times each treatment was recommended

Test case No treatment Malathion Carbaryl Carbaryl bait Nosema bait

1 3* 1

2 1* 3

3 0* 2 2

4 1* 3 1

5 5*

6 4*

7 1* 2

8 4*

9 4*

10 1* 3

11 4*

12 4*

13 5*

14 3* 1

15 3*

16 1 2*

17 1 3* 1

18 2* 3

19 2* 2

20 3* 1 1

Totals 52 22 5 4 0

Table 8:  Summary of the treatments recommended by Wyoming experts for each of the
20 test cases as compared to CARMA.  For each case the most recommended treatment is
boldfaced.  CARMA's recommendations are indicated by a *.
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circumstances. Many of the cases do not permit the selection of any economical treatment

because the treatment conditions have limited the number of treatment options (e.g., in

some of the test cases the user wishes to preclude all toxins, which leaves only high-cost

pathogen baits) to those that are more expensive than purchasing replacement forage or

renting additional land.  As such, no treatment should be expected to be the prevalent

selection when training on the Wyoming Median Set.  In summary, the test results

demonstrate that by integrating various reasoning paradigms CARMA's treatment

recommendations fall within those of the Wyoming experts 95% of the time.  Based on the

Wyoming entomologists and pest managers as the measure of expertise, CARMA has

tentatively achieved the level of a useful advising system.  A better evaluation of

CARMA's treatment recommendations could probably be made by training and testing

CARMA on each of the individual experts separately.

5.8 Summary

This chapter has shown tentative confirmation of two main hypotheses.  First, the

tests of CARMA's forage consumption prediction component demonstrate that integrating

model-based and case-based reasoning can lead to more accurate forage consumption

predictions than the use of either technique individually.  Second, the integration of

various reasoning paradigms in CARMA can lead to a useful advising system.  Other

interesting results were discovered during the testing of the various configurations of

CARMA.  First, it was discovered that performance is improved by separating match and 
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adaptation weights.  Case-specific adaptation weights seemed to be more appropriate than

global weights, but the number of test cases was insufficient to fully test this hypothesis.

The results showed that inconsistencies between a training set and a testing set are

likely when the two are generated by different experts.  The wide range of expert opinions

further suggests that it would be extremely difficult to train on one expert and then

duplicate the predictions of another expert.  Learning model-based parameters (i.e.,

attrition scalars and critical period adaptation weight) to fit experts' views led a an

improvement in CARMA's ability to match the forage loss predictions of the Wyoming

experts.  The tests also suggested that temporal projection of prototypical cases may need

to occur after case matching to be consistent with match weights set from information

gain.
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Chapter 6

Related Work

The two areas of related research most relevant to the CARMA project are the

application of artificial intelligence to natural resources problem-solving, and the

integration of multiple artificial intelligence techniques.

6.1 AI in natural resources

Two principal single-paradigm approaches to designing knowledge-based systems

for natural resources management have been followed.  One approach has been to use

rule-based reasoning to attempt to model the process of expert human reasoning, e.g.,

Beck, Jones, & Jones (1989) and Gupta & Suryanto (1993).  An alternative approach has

been to derive the expert's final answer without attempting to duplicate the expert's

reasoning process (Batchelor & McClendon 1989).  For example, Rodell (1978) describes

a large-scale numerical simulation model for grassland ecosystems.  However, there is a

growing recognition that no single reasoning technique is sufficient per se for complex

natural resource problems.  More recent approaches have used neural networks, e.g.,

Ehrman, Clair, & Bouchard (1996) and Slutz & Derr (1994).  Neural networks are an
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instance of supervised concept learning with performance similar to ID3 and nearest-

neighbor.  If neural networks were to be tested without the advantage of model-based

knowledge, results similar to ID3 and nearest-neighbor are probable (Mooney et al. 1989;

Weiss & Kapouleas 1989).

Several approaches combine rules and models, using at each stage in the reasoning

process the technique that is most appropriate (Tao et al. 1991; Stone & Schaub 1990). 

This permits each reasoning technique to compensate for the weaknesses of the other.  For

example, a rule-based system modeled after an expert might be improved by the addition

of model-based knowledge that the expert lacks (Jones, Jones, & Everett 1987; Beck,

Jones, & Jones 1989). Conversely, a model-based system might become easier to use

(especially for a novice) when combined with rules that interpret model results, e.g.,

COMAX (Lemmon 1986).

CARMA represents a continuation of the trend toward incorporation of multiple

reasoning paradigms to more effectively model human expert performance and to

compensate for incomplete or uncertain knowledge. There is psychological evidence that

much of human problem-solving uses past cases (Klein & Calderwood 1988).  In

particular, it is our observation that entomologists and pest managers reason with

prototypical cases in rangeland grasshopper management.  CARMA illustrates how

case-based reasoning can be integrated with other reasoning paradigms for natural

resource management.
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6.2 Integration of CBR and MBR

Several previous research projects have investigated the benefits of integrating

case-based reasoning with model-based reasoning (MBR). However, these projects have

generally assumed the existence of a correct and complete causal model.  For example,

CASEY (Koton 1988) performed medical diagnosis using model-based reasoning to assist

both case matching and case adaptation.  However, CASEY presupposed both the

existence of a complete causal theory of heart disease and complete explanations of each

case in terms of that theory.  Because the causal model in CARMA's domain is insufficient

for accurate prediction and the causal explanations associated with cases are incomplete,

the assumptions underlying CASEY's matching and adaptation strategies are inapplicable

to CARMA's domain.

Rajamoney and Lee (1991) used a different approach to integrating case-based

reasoning with model-based reasoning, termed prototype-based reasoning.  This approach

uses a library of prototypes to decompose problems into familiar subproblems.

Model-based reasoning is applied to the subproblems, a consistent composition of the

subproblems is determined, and model-based reasoning is applied to determine the

behavior of the resulting simplified model.  As with CASEY, this approach presupposes a

complete and correct (though not necessarily tractable) causal model. Similarly, Goel and

Chandrasekaran's (1989) use of device models to adapt design cases presupposes that the

device models are complete and correct.

Feret and Glascow (1993) describe an alterative approach under which

model-based reasoning is used for "structural isolation" (i.e., identification of the
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structural components of a device that probably give rise to the symptoms of a fault). 

Cases are indexed by these tentative diagnoses, which are then refined using case-based

reasoning.  This approach, while appropriate for diagnosis, is ill-suited for behavioral

prediction in the absence of faults.  CARMA's use of model-based reasoning for case

matching and adaptation represents an alternative approach to integrating CBR and MBR

appropriate for domains characterized by an incomplete causal model. 

6.3 Integration of CBR and RBR

Several projects have combined case-based reasoning and rule-based reasoning

(RBR).  PROTOS (Porter, Bareiss, & Holte 1990) uses rules to reason about the degree

of equivalence between features in different cases in a technique called knowledge-based

matching.  In effect, PROTOS attempts to infer matching of abstract features from

nonmatching observable features. An ablation study demonstrated that the use of rules for

matching contributes significantly to PROTOS's performance (Porter, Bareiss, & Holte

1990).  CARMA's technique of inferring abstract features in a new case in order to

establish a match with a prototypical case is similar to this approach.  CARMA differs in

that its prototypical cases have only abstract features, whereas PROTOS' past cases are

described in terms of observable features.

CABARET (Rissland & Skalak 1989) and GREBE (Branting & Porter 1991) are

architectures designed to permit either rules or cases to apply to problem-solving goals.

GREBE uses rules to improve case matching by inferring case facts and reformulating

open-textured terms.  CABARET's agenda mechanism uses heuristics to choose
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dynamically between rule-based reasoning and case-based reasoning.  GREBE and

CABARET demonstrate that integration of CBR and RBR can lead to high performance

in very complex domains.  CARMA is similar to these systems in that it permits both CBR

and RBR to apply to high-level goals (unlike PROTOS and CASEY, which use RBR only

to assist case matching and adaptation).  CARMA differs from CABARET and GREBE in

that the process model of rangeland pest management specifies the particular goals to

which CBR and RBR apply, so in this domain (unlike the legal domains of CABARET and

GREBE) it is not necessary to choose dynamically between the two techniques for each

goal that arises during problem solving.

ANAPRON (Golding & Rosenbloom 1991) combines cases and rules to solve

problems by using cases to represent exceptions to predictions made by the rules.

However, this approach is not applicable to domains such as rangeland ecosystems, where

cases and models are the main predictive components.
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Chapter 7

Contributions and Future Work

This dissertation has presented an approach for integrating multiple knowledge

sources for the purpose of providing accurate predictions about the behavior of physical

systems whose causal theory is incomplete.  This approach was used in the construction of

CARMA, a system for rangeland grasshopper management advising.  The research

contributions of the CARMA approach and various possibilities for future research

suggested by the development of CARMA are summarized in this chapter.

7.1 Contributions

This research has both theoretical and practical contributions.  The theoretical

contribution is a general approach for combining multiple knowledge sources (specifically

case-based and model-based knowledge) for the purpose of providing accurate predictions

about the behavior of physical systems whose causal theory is incomplete.  Such an

approach is important because many biological, ecological, and other natural systems are

characterized by incomplete models and insufficient empirical data for accurate

predictions.  Modelling expertise in such domains requires integrating the incomplete
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knowledge sources.  This integration is shown in the context of rangeland grasshopper

management advising, a specific task arising within rangeland management that requires

predictions about a biological system characterized both by an incomplete model and

insufficient empirical data for accurate use of empirical techniques.

The practical contribution is a demonstration of how the general approach of

integration can be applied to the task of natural resources management advising.  This

approach has been implemented in CARMA, demonstrating that integrating various

reasoning paradigms can lead to a useful advising system.

7.1.1 Integrating Individually Incomplete Knowledge Sources

Chapter 2 introduced rangeland grasshopper management advising, a specific task

arising within rangeland management that requires making accurate predictions about the

behavior of a physical system with an incomplete causal theory.  The absence of any

complete reasoning technique necessitates integrating a variety of individually incomplete

knowledge sources.

CARMA is a system that applies the general approach for integrating incomplete

knowledge sources to the rangeland grasshopper management advising task.  Specifically,

CARMA predicts the amount of the forage consumption a grasshopper infestation will

cause through model-based-adaptation, a specific integration technique for combining the

incomplete causal model with case-based reasoning.  CARMA differs from previous

systems for natural resources management in two important respects.  First, CARMA

represents an improvement over single paradigm approaches (e.g., rule-based reasoning,
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numerical simulation models, and neural networks) by having the power to exploit

multiple, individually incomplete knowledge sources.  Second, CARMA differs from other

multiple-paradigm approaches (e.g., rules and models) by using past cases, perhaps the

core of expert problem-solving in much of natural resources management, as well as many

other domains.

CARMA differs from previous integrations of case-based reasoning and

model-based reasoning in two ways.  First, several efforts have assumed the existence of a

correct and complete causal model, e.g., Koton (1988) and Rajamoney and Lee (1991),

that is not present in many complex biological, ecological, and other natural systems. 

Second, Feret and Glascow's  (1993) approach to identifying structural components of a

device that probably give rise to the symptoms of a fault is ill-suited for complex

behavioral prediction in the absence of faults. 

Several projects have combined case-based reasoning and rule-based reasoning

(RBR):  Porter, Bareiss, & Holte (1990), Rissland & Skalak (1989), Branting & Porter

(1991) and Golding & Rosenbloom (1991).  However, these approaches are not

applicable to domains such as rangeland ecosystems, where cases and models are the main

predictive components.

7.1.1.1 Evaluation

The effectiveness of integrating model-based and case-based reasoning in CARMA

to provide more accurate forage consumption predictions than the use of either technique

individually was evaluated by comparing CARMA's empirical and model-based knowledge
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components to the full consumption prediction module under both global and case-specific

adaptation weight modes.  The tests of CARMA's forage consumption prediction

component demonstrate that integrating model-based and case-based reasoning can lead

to more accurate forage consumption predictions than the use of either technique

individually.  Other interesting results discovered during the testing of the various

configurations of CARMA included the need to separate match and adaptation weights

and the possibility that case-specific adaptation weights are more appropriate than global

adaptation weights in this domain.

The results showed that inconsistencies between a training set and a testing set are

likely when the two are generated by different experts, particularly based on the wide

range of expert opinions in this domain.  The range of opinions indicates that rangeland

grasshopper management advising may typify a task in which there is no external standard

of correctness, and that experts' predictions vary according to a number of factors such as 

experience, ethical values, risk aversion, and institutional perspectives.

Learning model-based parameters (i.e., attrition scalars and critical period

adaptation weight) led to an improvement in CARMA's ability to match the forage loss

predictions of the Wyoming experts.  The tests also suggested that temporal projection of

prototypical cases may need to occur after case matching to be consistent with match

weights set from information gain.

7.1.2 CARMA: A Useful Advising System

CARMA represents a practical application of the general integration approach to
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the task of natural resources management advising.  In doing so, CARMA demonstrates

that integrating various reasoning paradigms can lead to a useful advising system. 

CARMA's advice (i.e., treatment recommendations) was evaluated by comparing it to the

advice given by entomologists and pest managers.  Test results showed that CARMA's

treatment recommendations were fairly indistinguishable from the Wyoming experts,

failing to match at least one expert only 5% of the time.

7.2 Future Work

The implementation of CARMA represents an integration of multiple knowledge

sources for the purpose of making predictions about the behavior of physical systems

whose causal theory is incomplete.  CARMA demonstrates that such an integration can

lead to a high level of performance at the rangeland grasshopper management task.  This

section discusses issues that should be addressed in an effort to improve CARMA, and

possible extensions of CARMA to other domains.

7.2.1 Comparison of Case-specific and Global Adaptation Weights

CARMA allows two alternative approaches to learning adaptation weights: case-

specific and global.  While case-specific weights produced higher predictive accuracy than

global weights on the Wyoming experts, the relatively small test sets seemed to cause both

types of weighting methods to suffer from overfitting.  To perform a better comparison of

both methods, leave-one-out tests should be extended to larger test sets.  In doing so, the

effect of incremental variations in test set size needs to be assessed.  It is hypothesized that
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larger test sets in this domain are less linear, and therefore favor case-specific adaptation

weights.

7.2.2 Comparison of Wyoming and Non-Wyoming Experts

The best predictions about Wyoming grasshopper infestations are arguably

produced by Wyoming experts as they typically have the most experience with these

infestations and the conditions typical to Wyoming.  As a result Wyoming experts should

provide more consistent predictions than other experts.  This consistency could be tested

by comparing the eight Wyoming experts' predictions to all other combinations of eight

experts.

Since CARMA's goal is to provide the best advice about Wyoming grasshopper

infestations, CARMA was tailored to emulate the predictions of the Wyoming experts,

which it does better than the other experts.  It should be determined whether CARMA's

higher performance on the Wyoming experts is due to their experience with Wyoming

conditions (which are modelled in CARMA) or mere coincidence.

7.2.3 CARMA As a Useful Advising System

CARMA demonstrates that integrating various reasoning paradigms can lead to a

useful advising system in that CARMA's treatment recommendations are fairly

indistinguishable from the Wyoming experts, failing to match at least one expert's

treatment recommendation only 5% of the time.  However, CARMA's recommendations

match the majority selection only 70% of the time.   It should be determined whether
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CARMA deviates from the majority selection because its forage consumption prediction

module was trained on the Wyoming Median Set (which could be determined by training

and testing CARMA on individual experts) or because some experts use different

treatment selection rules than CARMA.

7.2.4 Extensions of CARMA

Although CARMA is designed to advise ranchers about rangeland grasshopper

infestations in Wyoming, the integration approach used in CARMA could be easily

extended to grasshopper infestations in other states and possibly other countries.  Such an

extension would require modifying the case-base and model to include information such as

other grasshopper species, range values, and historical weather conditions.  This extension

might also require the use of different model-based techniques.  Taking this idea a step

further, CARMA could be tailored to produce advice about cropland rather than

rangeland grasshopper infestations, or even other pest species without varying the general

technique of integrating empirical and model-based knowledge.  Although CARMA is not

easily extendable to predicting the behavior of all physical systems with an incomplete

causal model, the general approach to combining appropriate knowledge sources is

definitely applicable to any domain insufficiently described by any single reasoning

technique.  The emphasis of developing a system that provides predictions in such

domains is on determining the domain specific knowledge sources and how they should be

integrated.
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 7.2.5 Coping with Wide Variation in Expert Opinions

 Because of the wide variation in expert opinions, the case library of the fielded

version of CARMA was restricted to Wyoming experts, who arguably have more

experience with Wyoming cases and who are more consistent in their predictions.

However, a relatively wide range of opinions is present even among the Wyoming experts.

In fact, geographical location may influence the experts' predictions less than such factors

as experience, ethical values, risk aversion, and institutional perspectives.  As a result,

capturing the expertise of all the experts in one data set (e.g., by taking the medians of the

experts' predictions) is probably impossible.  Clark (1991) describes a solution in which

multiple inconsistent expert opinions are incorporated in a system in which the user can

select a single expert from among a set of experts.  Applying this method to CARMA,

someone needing control recommendations for a grasshopper outbreak on a wildlife

refuge or rangeland managed by the Nature Conservancy might select cases reflecting the

judgements of an expert with high environmental values.  On the other hand, a rancher

wishing to control grasshoppers that might compete with livestock for valuable forage

might select the cases of an expert who tends to avoid risky economical recommendations.

Match and adaptation values associated with the cases of different experts would have to

be loaded along with these cases.
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Appendix A

Temporal Projection

After case matching CARMA temporally projects the best matching prototypical

case to align its average developmental phase with that of a new subcase (as described in

section 3.3.2.1).  AlignProtoCase returns the prototypical case PC temporally aligned

with the new subcase SC by calling AvgLifetimeDay to return the average day of the

grasshoppers' lifetime developmental distribution based on the temperatures within a case,

and ProjectCase to project the prototypical case the required number of days. 

ProjectCase calls several procedures.  The number of days that grasshoppers spend

within a developmental phase is computed by NumDays according to the temperatures

within a case.  AttritionScalar returns the amount by which the grasshopper

density within a developmental phase should be scaled based on the precipitation within a

case.  The algorithms for AlignProtoCase and ProjectCase are as follows:
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Appendix B

Proportion of Lifetime Consumption in the Critical Period

Critical period adaptation requires estimating the proportion of lifetime

consumption in the critical period (as described in section 3.3.2.3). 

ProportionConsumptionCriticalPeriod produces this estimate by alternately

projecting the grasshopper population of a case to the ends of the critical period (both

beginning and end) to determine the development phases at those two points. 

ProportionConsumptionCriticalPeriod calls

ProportionLifetimeConsumptionRemaining which estimates the proportion

of lifetime consumption that remains for the grasshoppers in a case based on the

proportion of grasshoppers in each stage and values for the proportion of lifetime

consumption occurring in each stage.  These algorithms are as follows:
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Appendix C

Determining Future Infestation Probabilities

As noted in section 3.5.1, CARMA uses statistical reasoning and the historically

derived Markov transitional probabilities for the infestation location to calculate the total

reduced probability of future reinfestation for each treatment type.  If CARMA determines

that few eggs will have been laid before the treatment date (i.e., treatment may result in a

reduction in the probability of future reinfestation), CARMA calculates the yearly 

Transition type

Number of years
infested in last 50 yrs.

p(I�I) p(I�U) p(U�I) p(U�U)

0 0.00 1.00 0.00 1.00

1-2 0.00 1.00 0.05 0.95

3-4 0.00 1.00 0.10 0.90

5-6 0.05 0.95 0.15 0.85

7-8 0.10 0.90 0.20 0.80

9-10 0.20 0.80 0.25 0.75

11-12 0.25 0.75 0.30 0.70

13-14 0.30 0.70 0.35 0.65

15-20 0.45 0.55 0.40 0.60

Table 9:  Transition probabilities based on the number of years infested in the last 50
years.  Infested conditions occur when there are at least 8 grasshoppers in the adult phase.
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infestation probabilities for each treatment type based on the historical Markov transitional

probabilities.  The probabilities, which appear in Table 9, include the following transitions

from one year to the next: infested to infested, p(I�I); infested to uninfested, p(I�U);

uninfested to infested, p(U�I); and uninfested to uninfested, p(U�U).

Probabilities of future infestation are calculated through the following equations

starting with year 0 (i.e., the current year of infestation) where pU(i) and pI(i) are the

probabilities in year i of being uninfested and infested, respectively.  If treatment will be

applied, the probability of infestation in the current year, pI(0) ,  is 0.  If no treatmenttreat

will be applied, the probability of infestation in the current year, pI(0) , is 0 if thenotreat, density<8

grasshopper density is less than 8 grasshoppers per square yard (i.e., uninfested), and 1.0

otherwise.

However, these equations do not account  for treatments that preserve beneficials

that tend to reduce grasshopper numbers.  Neither do they account for cases in which a

very large area of infestation is treated.  Both of these conditions will lead to further

reductions in the probability of future infestation.  These conditions are factored in by
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multiplying the probability of infestation in a year by both treatment and infestation area

dependent scalars.  The scalars for treatment type and total area of infestation appear in

tables 10 and 11, respectively.

Treatment type

Year No treatment Malathion Carbaryl Carbaryl bait Nosema bait

1 1.00 1.00 1.00 0.90 0.90

2 1.00 1.00 1.00 0.95 0.95

3 1.00

Table 10:  Factors by which the probability of going from uninfested (given treatment) to
infested are scaled based on the treatment type.

Total area infested * 10,000 acres

Year 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9+

1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

2 1.00 0.80 0.75 0.70 0.55 0.45 0.40 0.35

3 1.00 0.80 0.70 0.70 0.65

4 1.00

Table 11:  Factors by which the probability of going from uninfested (given treatment) to
infested are to be scaled based on the total area of infestation.

The algorithm ProbabilityInfestationInYear factors these scalars into

the probability equations to determine the probability of an infestation occurring in a year

based on the treatment type as follows:
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The total reduced probability of future reinfestation for the treatment type is calculated by

summing each yearly difference between the probability of infestation with and without

treatment.
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