
ZORQ: A Gamification Framework for Computer
Science Education

John Hastings
Cyber Systems Department

University of Nebraska at Kearney
Kearney, NE USA
hastingsjd@unk.edu

Sherri Weitl-Harms
Cyber Systems Department

University of Nebraska at Kearney
Kearney, USA

harmssk@unk.edu

Adam Spanier
Information Systems and Technology

University of Nebraska at Omaha
Omaha, NE USA

aspanier@unomaha.edu

Matthew Rokusek
School of Computing

University of Nebraska - Lincoln
Lincoln, NE USA

mrokusek4@huskers.unl.edu

Ryan Henszey
Self Funded

Kearney, NE USA
henszey@gmail.com

Abstract—This research paper introduces a unique system
called ZORQ that is a combination of a game development frame-
work and a gamification framework (GDGF). The ZORQ GDGF
acts as a catalyst to help motivate students by increasing student
engagement and success within undergraduate Computer Science
(CS) education, regardless of student experience and background.
The dynamic gamification elements utilized within the GDGF
make it an attractive learning method for students. After col-
laborative game space customization, ZORQ gameplay sees each
student tasked with designing a ship movement philosophy and
then implementing their own code to autonomously control the
ship in an interstellar game space filled with supplies, obstacles,
and enemy ships. The particulars of engagements between ships
can vary greatly by semester, along with the resources/objects
present in the game, depending on the collaborative customization
and the independent ship strategies implemented.

A preliminary ZORQ trial was conducted over five years in
an undergraduate Data Structures and Algorithms (DSA) course.
The ZORQ trial is designed to fulfill the following objectives: 1)
implement DSA concepts discussed within the course, 2) identify
appropriate problem-solving approaches, 3) apply one or more
solutions, 4) build depth with a coding language, 5) bridge the gap
between limited concept assignments and large, multi-developer
software systems by allowing students to build code within a
larger architecture, 6) introduce students to version control, 7)
illustrate the use of prior mathematics coursework in practical
applications, and 8) introduce unit testing in software systems.
In exit surveys, students expressed overwhelming satisfaction
with this approach. More than 84% of the students surveyed
found the system useful in their educational experience and saw
benefit to inspecting a completed software project. 82% of the
students found that ZORQ increased software development com-
prehension. 80% enjoyed using their own personal creativity in
designing a ship controller, 76% found ZORQ helped them learn
how to implement and use DSAs. 71% found the system engaging
and found the system interaction to be clear and understandable.
Observations of student performance in later courses suggest
better student maturity and comprehension in preparation for
proposing and implementing their own independent projects.

Index Terms—Computer Science Education, Dynamic Gami-
fication, Active Learning, Game Development Based Learning,
Game Development Gamification Framework

I. INTRODUCTION

Gamification is “the use of design elements characteristic
for games in non-game contexts” [1]. While the use of
games in education is almost as old as education itself [2],
the advent of digital systems revolutionized the landscape
of possible games that could be used in the classroom. As
early as the CD-ROM era, educators have been attempting
to use digital technologies to augment traditional learning
practices [3]. Though these early implementations didn’t yet
truly encapsulate the idea of modern gamification [1], they
proved the concept enough for researchers to begin working
with and understanding gamification application interventions
and the resulting student behavior outcomes.

As a modern discipline, gamification remains relatively
young, only formally existing since 2011 [4]. Luo [5] notes
that studies that achieved meaningful gamification in the
educational domain are limited, while also indicating that en-
gagement is a key measure of gamification’s effectiveness. The
relative novelty within the discipline provides a great impetus
for researchers to understand which gamification interventions
attain the best outcomes in specific areas of education and to
seek a better understanding of the structures and classifications
that may exist in gamification [6]. By understanding the
applications and structures within gamification, researchers
can hone gamification interventions to better suit the needs
of different educational requirements.

While traditional methods still remain the bulwark of most
modern courses, the use of gamification as a means to augment
modern education is becoming increasingly popular [7]. The
use of gamification in education is generally motivated by a
desire to improve both motivation and engagement in students
[8]. As such, existing empirical research in psychological
fields dealing directly with motivation and engagement such as
Self Determination Theory (SDT) [9], [10] and Flow Theory
(FT) [11] can provide greater fidelity and effectiveness in



terms of how gamification can be best implemented. Gami-
fication fits well with SDT, a macro-psychological theory of
human motivation, which contends that to effectively sustain
motivation and persistence in a discipline (such as CS),
students need to feel competent, autonomous, and related to
others [9], [10], [12].

FT seeks to understand how individuals achieve the full,
immersive participation in the present moment [11]. Rather
than design and implement gamification interventions within
the strict confines of experiential or anecdotal contexts, the
use of well-known motivational techniques can provide a
more stable foundation for student success. The ‘gameful’
experience [13] is tied to flow experience, which is composed
of nine dimensions and is directly related to student motivation
and engagement [11], [14]. In this way, flow experience is
highly related to student performance within an educational
context [11]. While the effects of gamification on the flow
state have been researched to a limited extent [14], [15],
there exists a dearth of research pertaining to how individual
differences in gamification applications moderate the influence
of gamification on flow state in learners [14].

Gamification provides the component of fun that helps in
transforming student attitudes towards learning [16]. Further,
the use of game mechanics in learning interventions can
improve the ability to learn new skills by up to 40% [8].
These benefits coupled with the ever-increasing complexity
of modern technological systems create a strong motive to
incorporate specialized gamification applications in education.

Additionally, the use of gamification can be used to great
effect to bolster engagement, motivation, and student success
in traditionally under-served schools [17] where exposure to
CS concepts is generally lacking [18]. When entering college,
this lack of experience generally hinders interest in CS majors
and often leads to feelings of “impostor syndrome” [19]. The
use of gamification applications can not only bridge the gap
in knowledge, but also provide an impetus to engage with the
material being presented.

With these benefits in mind, a more concise and effective
gamification intervention can be designed through analysis
and understanding of various gamification applications that
currently exist in education. Within the scope of this re-
search, gamification applications in Data Structures and Al-
gorithms (DSA) courses can inform areas where more effort
is needed. In the classification system in [6], a series of
five characteristics-based classifications for DSA gamification
applications is proposed and explored. While three of the
proposed categories find existing candidates in DSA courses,
two classifications appear unexplored. Most notably, the classi-
fication titled Dynamic Gamification [6] presents several ben-
eficial characteristics that present significant potential benefits
to student learning in DSA courses.

The rest of this paper is organized as follows. Section II
details game development-based learning and gamification in
CS Education. Section III presents the ZORQ Gamification
Framework. Section IV outlines the ZORQ user study. Section
V presents the discussion of the findings of this research.

Section VI outlines potential future research, and section VII
presents the conclusion reached through this study.

II. GAME DEVELOPMENT-BASED LEARNING AND
GAMIFICATION

The use of game development as a means to facilitate edu-
cation is growing alongside gamification. Game Development-
based learning (GDBL) as defined by Wu et al. [20] is any
process by which “students are required to modify or develop
a game as a part of a course using a game development
framework (GDF) to learn skills within CS and software
engineering (SE).” A GDF as applied to GDBL is any toolkit
or codebase by which games can be modified or developed
[20]. GDF’s include game engines, platforms and simulations
as well as integrated development environments [20]. By
nature, GDF’s are technical artifacts where GDBL is a method
by which game development is used to instruct students.

While the creation of a game as a means to instruct also
boosts student motivation through topical associations with
games and game environments [20], gamification and GDBL
are not concurrent domains. Where gamification is the explicit
use of games mechanics and elements in traditionally non-
game environments [1], GDBL is the use of game development
to meet specific learning objectives [20]. In some cases,
the use of game development simply supports the learning
of some code base, CS concept, or GDF. Since the game
being developed is not the emphasis of the learning activity,
this variety of GDBL falls into a more traditional method
of teaching. In contrast, gamified GDBL is the overlapping
domain where GDBL methods implement game mechanics in
non-game environments as a means to instruct students [1] as
shown in Figure 1.

Fig. 1. Gamification and Game Development-Based Learning

While gamified interventions and GDBL applications offer
unique and interesting insights when used individually, the oc-
currence of simultaneous GDBL and gamified methodologies
presents novel student intervention characteristics. Currently,
the use of static gamified applications [6] appears to dominate
the CS gamification landscape. Yet, as proposed by Gibson
and Jakl [21], allowing the learner to make dynamic choices in
the gamified experience will facilitate the occurrence of more
meaningful gamification, and learners see increased intrinsic



motivation. While static game play can allow some student
choice, the game framework must keep student input within a
specific domain [6]. By combining the use of highly student-
centric decision-making methods in a GDBL methodology
and gamifying the process, motivational benefits of both
gamification and GDBL can be further augmented by allowing
the learner to choose not only how they play the game, but
also how to design a gamified application.

Dynamic Gamification (DG) [6] is a novel combina-
tion of GDBL and gamification which exhibits a dy-
namic phase-based, iterative process using a Game Devel-
opment/Gamification Framework (GDGF). DG, while not di-
rectly related to student psychological imperatives, provides a
framework by which SDT and FT can be fully achieved in
gamification interventions. The game application development
phase is followed by a gamified testing phase where each
student operates within the static confines of the gamified
environment. After testing, playing, and experiencing the
environment, the students can cycle back into a collaborative
GDBL phase. The iterative process allows the dynamic inte-
gration of student input, GDBL, and Gamification into a single
streamlined process.

Through this iterative, team-based process, collaboration is
fostered among the student learners. Collaboration helps learn-
ers better interact with the content. According to Kim et al.
[22], as players collaborate, they “engage in a shared, relevant,
goal-oriented activity”. This sharing of effort provides not
only student support and camaraderie, but also helps develop
positive student learning behaviors as learners work together
and interact with the content [23].

As an added benefit, the iterative model presented in [6]
allows for student correction and adjustment in both the devel-
opment of the game and the playing of the instantiated gam-
ified application. This conceptual acceptance and correction
of “mistakes” fosters concepts espoused by Alsawaier [16],
[24]. The Alsawaier study found that successful game design
allows the players to try multiple times to achieve success.
In the gamified environment, mistakes generate “opportunities
to learn and correct” [25]. Players who received constructive
feedback following failure in the gamified environment ex-
pressed positive emotions about their experience [26].

With respect to DSA coursework, specifically oriented to-
ward the DG classification, this research presents: 1) a novel
GDGF called ZORQ, 2) student survey results evaluating
the effectiveness of ZORQ, and 3) discussion concerning the
benefits and detriments of the intervention.

III. ZORQ: A GAME DEVELOPMENT AND GAMIFICATION
FRAMEWORK (GDGF)

ZORQ (Zero Operator ReQuired)1 is a GDGF in which
spaceships navigate a 2D game universe filled with objects
which affect a ship either positively or negatively. Examples of
game objects that have been used include fuel, shields, mines,

1The ZORQ project public repository is available at
https://gitlab.com/ZORQTEAM/zorq.

black holes, ship-jump portals, electromagnetic pulses, bullets,
and lasers. Students adjust the GDGF architecture as needed
each semester, and then implement code to automatically
control their own ship in a gamified process.

In the current version of ZORQ, ships earn points for each
frame in which they remain active/alive, and also by gathering
resources which award bonus points. Remaining active is the
primary means by which ships maximize points. Negative
encounters cause a ship to be deactivated for five seconds,
after which they respawn in a different location. Examples
of negative encounters include being successfully targeted by
another ship, running into an obstacle, or getting sucked into a
black hole. Ships can target other ships, and if successful, steal
a percentage of the score from the attacked ship. Engagements
between ships generally favor the ship with more resources
(e.g., fuel, bullets, shield energy, etc.) or a superior strategy.
The particulars of these engagements can vary greatly by
semester, along with the resources/objects present in the game,
depending on how students want the game to behave.

A. ZORQ’s Evolution as an Educational Tool

Over the span of several years, a third semester DSA
course curriculum included the development and use of a
series of GDGFs as class projects. ZORQ was one of the
earliest GDGFs created (in 2006). Using an agile approach,
the instructor and students worked interactively as a team to
brainstorm game ideas. Based on the game idea, the instructor
would lay out an initial architecture including the game
engine and initial graphics, and the class would incrementally
add game components to the GDGF. Within these projects,
students would design and implement controllers that would
act autonomously within the game. As a semester progressed
and new components were added to the game, or changes
occurred, students would update their controllers to handle
the changes.

Over time the delivery of this gamified GDBL approach was
refined based on some lessons learned. These included:

1) Competitions: In early versions, the game was pitched as
a competition and students would design controllers that
aimed to perform better than other student controllers. As
the semester progressed, repeat competitions were held.
While some students loved the competitive aspect, other
students were turned off by this and seemed to disengage
as the semester progressed. Competitions in gamification
applications have been found to fail to engage and even
demotivate some students [27], [28].

2) Shared project repository: Just prior to each competi-
tion, students were required to commit their controllers
to a shared project repository visible to the entire class.
When students saw a controller that handled some aspect
of the game well, they often would incorporate that code
into their own controllers rather than analyzing the prob-
lem and designing a solution themselves. This was neither
fair to the students who had dedicated time to formulating
a winning approach, nor the students who missed the

https://gitlab.com/ZORQTEAM/zorq


opportunity to themselves learn how to implement the
particular strategy or further explore alternate approaches.

3) Use of class time: Developing a GDGF over the course of
the semester was a meaningful exercise for the students.
However, developing a unique GDGF each semester was
not only time consuming, but also required investigat-
ing content that didn’t necessarily fit nicely within the
course (e.g., computer graphics) and also consumed time
needed for core DSA or CS concepts (e.g., asymptotic
efficiency) which didn’t always fit appropriately into the
development of the GDGF.

The DSA course delivery was adjusted to address these con-
cerns. After multiple years of creating unique one-off GDGFs,
one year using the outside gamification application Robocode
[29], and a few years with mobile application development
[30], in 2017 the use of ZORQ as the GDGF was revisited.
ZORQ has been used in the DSA course since then, and was
selected for several reasons:

• ZORQ is fully implemented, and students could focus on
the shorter term goal of implementing a controller rather
than developing an entire system. In addition, because the
GDGF had seen use, most bugs were resolved;

• ZORQ gives students an early (third semester) experience
seeing a much larger system, and learning skills to begin
understanding and working with a larger systems;

• Student engagement with ZORQ was observed to be as
high or higher than any of the other GDGFs used;

• ZORQ is a system under the instructor’s control and can
be refactored (modified/extended) as necessary;

• As a system under our control, students can write test
code for their controllers to gain an understanding of the
important concept of unit testing early in their careers;

• ZORQ is complex enough that students can creatively
implement controllers in an almost endless number of
ways; and

• ZORQ can be used in the later courses; such as the SE
course when talking about cohesion/coupling.

B. ZORQ Architecture

The following text describes the most recent version of
ZORQ. At initial startup, the user is met with a settings screen
that provides various game simulation options such as multi-
threading, item spawn rate, universe size, graphical scrolling
background toggle, and headless mode. Next, the user selects
the ship controllers to be used in the simulation. The user
may select as many controllers as desired. Once selected, the
controllers are internally connected to ships, one controller per
ship, and the game begins. If headless mode was not selected,
then graphics are set up before the game begins. During game
time, the game space and elements are depicted with moving
images as shown in Figure 2.

In the upper left of the screen, stats are displayed including
controls, frame rate, and a listing of the active ship controllers
and their scores. The frame rate can be adjusted via the
keyboard, allowing for rapid simulation, with one engine

Fig. 2. ZORQ Screenshot

cycle (i.e., game state) per displayed frame. The game runs
indefinitely until the program is closed.

If headless mode is selected, the graphical display is
replaced by console output which periodically shows stats
including the game frame/cycle rate. In headless mode, the
frame rate is uncapped and the simulation runs as fast as the
hardware permits.

An overview of the ZORQ classes most relevant to this
discussion appears in Figure 3. The classes are separated and
color coded based on their level of abstraction, where level 0
is the most abstract and level 3 is the least abstract. Objects at
higher levels know about objects at lower levels. The Engine
manages the game and contains the main game loop which
advances the game state while maintaining a steady frame rate.
The Universe holds the less abstract game elements, and steps
forward to the next game state when triggered by the Engine.
Elements in the Universe are special types of FlyingObject.

Each ship is connected to a custom ShipController, devel-
oped by the students, which dictate how the ship behaves.
Each controller has access to the Universe and thus all the
elements in the game space. Students decide and implement
what they want their ship to do (via the controller) based on
the state of the game elements in the Universe.

There are a few main components to the scoring system. As
ships move around the game space, their scores will gradually
increase. If a ship is destroyed, it then loses some of its score.
If it was destroyed by an opposing ship, then the opposing ship
gains a portion of the destroyed ship’s score. Because a ship’s
resources are limited, students often develop very complex
strategies.

There are several game elements described as bonuses, as
shown graphically in Figure 2 and listed as classes in Figure
3. Fuel bonus objects resupply ships with a limited amount
of fuel which is otherwise consumed as a ship accelerates.
Bullet bonuses refill and upgrade a ship’s bullet supply as
ships can shoot bullets. Each ship has a metered shield that is
decremented when powered on to deflect dangerous objects.



Fig. 3. ZORQ UML Class Diagram

Shield bonuses refill this meter. Ships are allowed to teleport
to another location on demand using ship jump bonus objects
(shown as blue circles with white centers). Ships can also
shoot lasers and laser bonus objects (shown as flaming wands)
refill a ship’s laser supply. Electromagnetic pulse (EMP) bonus
objects (shown as three green circles) give ships EMP blast
capabilities. Points bonus objects (shown as dollar signs) give
ships that pick them up points to improve their score. Magnet
bonus objects cause a ship to pull in nearby bonus objects for
a short amount of time.

Several objects have negative outcomes for ships. Bombs
and bullets either damage a ship’s shield or destroy a ship if
touched. The distinguishing factor between bombs and bullets
is that bullets originate from opposing ships. Lasers are a
special type of bullet that move very fast, making it harder for
opposing ships to react. A ship hit by an EMP loses its ability
to shield and shoot objects for a short amount of time during
which it becomes vulnerable to attack. Black holes are hazards
that pull in ships and destroy them. Black holes also attract
bullets and other objects that get close to them, as shown in
Figure 2.

Because ZORQ was initially created as a one semester, one-
off project, the inaugural focus was primarily on quickly get-
ting ZORQ running and engaging students, without dedicating
much time to making the best design and architectural choices.
After coming back to ZORQ, work resumed to improve,
refactor, and adjust ZORQ. Most of these changes occurred
in the classroom, in a GDBL way that is engaging and
educational for the students, and provides opportunities for
students to have a stake in collaboratively providing input on

its development. Examples of improvements/additions include:

• ZORQ was refactored to better separate the model and
view. In addition to showing best practices, another
benefit of improving the design was the opportunity to
speed up the frame rate. Rather than simply displaying
the game at a steady frame rate, ZORQ was modified so
that it can be adjusted to run as fast as the computer can
support. Over 1000 simulated frames per second (fps) in
graphical mode are possible depending on the hardware,
the number of controllers, and the CPU demands of
the controller activities/strategies. This allows students to
quickly see how well their controllers will behave over
time and supports stress testing.

• The architecture was stress tested at high frame rates
using a profiler to identify and resolve issues such as
logical errors and memory leaks caused by failing to
remove items from collections. Profilers can conduct a
variety of dynamic software analyses and are available
for most popular environments, dating back to 1982 [31].

• The headless mode was also a recent addition. Speeds in
excess of 100k cycles per second are possible, allowing
for further stress testing and for the fast generation of
training data needed to develop future controllers using
machine-learning/deep-learning approaches.

• A multi-threaded mode was added, in which controllers
running in separate threads. Typically, simulations are run
with around 15-20 controllers. The possible benefits of
the multi-threaded mode need to be investigated further.

• The architecture was reviewed from a coupling and cohe-
sion2 [32], [33] perspective using CodeMR [34]. Because
of the quick inaugural development and iterative updates,
ZORQ’s architecture was found to be somewhat weaker
in these areas. Several instances of low cohesion and
high coupling in ZORQ were subsequently discussed and
repaired in the SE course. For example, the graphics were
separated from game objects allowing game objects to
maintain only the logic of how they should function rather
than how they should look. These types of improvements
make way for new features to be more easily added to the
architecture. The current cohesion and coupling results
can be seen in Figure 4, and according to the results,
further improvements are possible.

• Additional perfective changes were made such as profil-
ing ZORQ to identify code that could be sped up, e.g., re-
placing the precise distance formula which uses the slow
”sqrt” math function with distance comparisons using
the distance squared calculation. According to Swanson
[35], perfective maintenance is maintenance performed to
eliminate processing inefficiencies, enhance performance,

2Coupling is a measure of the interconnectedness of modules within a
system, while cohesion is a measure of the degree with which components
within a module are related to each other. High coupling complicates system
maintenance as updates to one class are more likely to impact other classes
with a cascading effect possible. In object-oriented software, for the sake of
maintainability and scalability, it is generally preferred to have low coupling
and high cohesion.



or improve maintainability.

Fig. 4. ZORQ Coupling Cohesion Analysis

C. Approach to delivering ZORQ as a Gamification Tool

The gamified GDBL approach using ZORQ in a DSA
course provides an opportunity for students to meet the follow-
ing learning objectives: 1) implement DSA concepts discussed
within the course, such as priority queues and hash maps,
in fun and engaging ways, 2) identify appropriate problem-
solving approaches, 3) apply one or more solutions, 4) build
depth with a coding language, 5) bridge the gap between
limited concept assignments and large, multi-developer soft-
ware systems by allowing students to build code within a
larger architecture, 6) introduce students to version control, 7)
illustrate the use of prior mathematics coursework in practical
applications, and 8) introduce unit testing in software systems.

The approach to delivering ZORQ has been refined over
time, based on observations and students’ suggestions, but
follows the implementation life cycle shown in Figure 5.
Briefly, ZORQ is currently utilized in the DSA course as
follows:

Fig. 5. ZORQ Implementation Life Cycle

1) GDBL Phase I:
• ZORQ is introduced a month before the end of the

semester to give sufficient time for students to interact
with the GDGF. This addresses the previously mentioned
issue of consuming too much time by fully implementing

a unique GDGF each semester. With perfective changes,
each new semester uses the most recent version of ZORQ.

• After an initial introduction, the class collaboratively
discusses what changes or additions to make to the GDGF
before working on ship controllers. These changes can
include adding or removing game objects or changing
the behavior of the game or existing objects. For example,
over time, new game bonuses such as shields have been
added.

• The changes in the configuration for a given semester
are made collaboratively as a class. Depending on class
time availability, these changes are made either inside or
outside of the class by the instructor or a student. Either
way, the changes are shared and explained to the class as
part of the GDBL experience.

2) GDBL Phase II:

• Once the configuration of the architecture is decided,
the students are provided some small sample skeleton
controllers that demonstrate in a basic way that a ship
controller should analyze the state of the game (e.g., the
game objects, their locations, and what they are doing)
and then select an action to take. The example code
demonstrates how to utilize some of the built-in utilities,
e.g., the function to compute angles to other game objects.
and demonstrates that capable controllers can be built
without using Artificial Intelligence (AI) concepts, which
students will see in a later course.

• Students are instructed to design and implement a con-
troller that follows their own unique, creative philosophy,
using DSA concepts. Grading on the assignment is not
tied to how their ships score when the game runs, but
rather how well students: put effort into the assignment,
implement their philosophy, describe their philosophy
to the class, document their code, and test their code.
When designing controllers, students generally focus on
maximizing their scores, although some students might
pursue other goals such as path finding or resource
gathering. This approach has lead to some creative solu-
tions. For example, one student implemented a ‘copycat’
controller that would mirror the actions of the closest
opposing controller. The shift away from “competition”
to implementing a philosophy addressed the issue of some
students not enjoying an atmosphere of competition [36].

3) Gamification Phase:

• Students are provided a library of precompiled, obfus-
cated controllers created by past students, for testing
purposes. Students can test their ship controllers against
these controllers and adjust their algorithms prior to the
in-class game play session, which includes controllers
from other current student developers. With changes to
ZORQ each year, the software engineering open-closed
principle [37] has been followed, in which the code is
open for extension, but closed for modification. The idea
is to not “break” previously created controllers so that
new students have something to test against.



• One class day at the end of the semester is dedicated
to running the students’ controllers. This is intended
partly so students don’t get caught up in the need to
repeatedly compete with each other. Students who wish
to view the game as a competition can do so, but they
are instructed that they are not graded on that. During
the “simulation”, each student is required to discuss their
creation. This activity serves the additional benefit of
helping students get comfortable talking in front of peers,
as well as talking about their creation, the DSAs used and
the software development process.

• Students submit their code to their own private repository
which they share with the instructor for grading.

IV. ZORQ USER STUDY

The primary aim for the use of ZORQ is to increase student
engagement and success within undergraduate CS education,
regardless of experience and background. To understand the
teaching effectiveness of using ZORQ as an gamification tool
in undergraduate CS education, its usage in a DSA course over
multiple semesters was evaluated.

A. Study Design

An anonymous online exit survey was distributed to students
who had used ZORQ in a DSA course at the University of
Nebraska at Kearney (a regional university serving primarily
rural students) from 2017-2021. Due to the rural nature of
the region, few students encounter CS and SE concepts before
attending university [18], [38], [39]. The study received ethical
approval from the university, and students were given informed
consent to opt-in to completing the survey, but no incentive
was provided. Since the DSA course is a required course that
all students must pass to continue in the program, only students
who passed the course were surveyed, to ensure each student
was only surveyed one time.

The students were asked to evaluate their agreement to
several prompts using a 5-point Likert scale, with strongly dis-
agree given a value of one, with the other rankings (disagree,
neither, agree, and strongly agree) given increasing values,
concluding with strongly agree having a value of five. The
following prompts were posed:
Q1. I saw benefit to inspecting a completed software project.
Q2. I found the system useful in my educational experience.
Q3. Using the system increased my understanding of software

development.
Q4. I was able to use my personal creativity in designing a

ship controller.
Q5. Using the system enabled me to learn how to implement

and use data structures and algorithms.
Q6. I found the system engaging.
Q7. Learning to interact with the system was clear and

understandable.
Q8. Using the system increased my understanding of data

structures and algorithms.
Q9. It was easy for me to become skillful at creating my own

ship controller within the system.

B. User Study Results

Of the 98 students in the population of students who
have completed the course in the semesters surveyed, there
were 49 completed responses. While low (50%), this was
encouraging given response rates for such optional, anony-
mous university surveys is often 20-30% (pre-COVID-19)
[40]. Nine responses were from female students, (18.3%)
which matches the male/female distribution in the overall
population surveyed. One student did not indicate gender, and
39 respondents identified as male.

Table I shows the Likert scale results for the prompts
asked, where SA=Strongly Agree; A=Agree; N=Neither Agree
or Disagree; D=Disagree; and SD=Strongly Disagree. The
average on the 5-point scale is reported as is the percentage
of students who selected either SA or A, for each prompt.

TABLE I
STUDENT EVALUATION 2017-2021 (N=49, 9 FEMALE;39 MALE)

Overall Male Female
SA A N D SD AVG SA&A AVG SA&A AVG SA&A

Q1 34 7 3 2 3 4.37 84% 4.44 85% 4.10 80%
Q2 25 16 3 3 2 4.20 84% 4.26 85% 4.00 80%
Q3 22 18 4 3 2 4.12 82% 4.15 82% 4.00 80%
Q4 27 12 3 3 4 4.12 80% 4.23 85% 3.70 60%
Q5 17 20 6 5 1 3.96 76% 4.15 82% 3.50 60%
Q6 28 7 10 2 2 4.16 71% 4.21 74% 4.00 60%
Q7 18 17 8 4 2 3.92 71% 4.00 74% 3.60 60%
Q8 16 14 12 5 2 3.76 61% 3.92 67% 3.30 40%
Q9 15 15 11 7 1 3.73 61% 3.85 67% 3.20 40%

The study found that overall, 84% of the respondents saw
the benefit of being able to inspect ZORQ as a completed
software project and found the system useful in their educa-
tional experience. 82% of the students reported that using the
system increased their understanding of software development.
80% of the students reported that they were able to use their
personal creativity in designing a ship controller. 76% found
that using the system enabled them to learn how to implement
data structures and algorithms. The lowest agreement reported
by the students was in the ease of becoming skillful at creating
their own ship controller within the system (61%), which is
likely due to the complexity of the ZORQ system.

While there were only nine female respondents, their agree-
ment in response to the prompts was lower than their male
counterparts, on all survey prompts. Overall, while the range
of scores was lower for the female students, a similar ranking
of agreement for the research prompts was found, with “seeing
the benefit of being able to inspect ZORQ as a completed
software project” having the highest agreement and “the
ease for them to become skillful at creating their own ship
controller within the system” having the lowest agreement.

V. DISCUSSION

The results found that students overwhelmingly responded
positively to their experience with ZORQ. This aligns well
with existing research about the value of gamification when
applied to CS education [6], [41].



As described in the introduction, SDT and FT can provide
greater fidelity and effectiveness in terms of how gamification
can be best implemented. ZORQ functions to fulfill both SDT
and FT through the implementation of Dynamic Gamification
(DG). ZORQ provides full autonomy of action within each
students’ ship controller that allows students gain competence
in relation to others. In this way the ZORQ intervention
fully applies SDT concepts. FT is achieved through the fluid,
iterative development process that sees students adjusting code
on the fly while simultaneously working together within the
framework. By applying DG concepts, full immersive flow can
be attained by both the variance and diversity of outcomes
presented by the ZORQ GDGF.

The results demonstrate that the ZORQ GDGF acts as a
catalyst to help solve the challenges of increasing student
engagement and success within undergraduate CS education,
even among underserved populations, as studied. ZORQ pro-
vides each student with a personal motive to engage and excel
in the learning process. The gamified GDBL approach is a
valuable tool in the arsenal of CS educators.

The lead researchers have taught multiple undergraduate CS
courses at the same university for more than 20 years and
see the students in multiple courses as they progress through
the program. Observations of student performance in later
courses suggest better student maturity and comprehension
in preparation for proposing and implementing their own
independent projects, with the use of ZORQ.

Additionally, improvements in introducing and explaining
ZORQ to the students lead to stronger student agreement with
the benefit of ZORQ in the most recent implementation. While
71% of students overall found that interacting with the system
was clear and understandable (Q7), 100% of the students in the
most recent course, fall 2021, (n=7) agreed or strongly agreed.
Similarly, 100% of these students reported that they could use
their personal creativity in designing a ship controller (Q4),
saw the benefit of being able to inspect ZORQ as a completed
software project (Q1) and found the system useful in their
educational experience (Q2).

While ZORQ demonstrates a boost to motivation, engage-
ment, and comprehension, some areas exist where the use of
ZORQ can be improved. One such area lies in helping students
become skillful in creating functional ship controllers. Further,
students also need to better understand the connection between
fundamental DSA concepts like Queues, Stacks, Hash Tables,
and Trees and the ZORQ GDGF.

The results of this study can help instructors better imple-
ment ZORQ in a way that enables future students to build
confidence in their knowledge of computing; lay a strong
foundation for more advanced classes; generate enthusiasm for
creative projects; and encourage continuing with their studies
(major retention).

VI. FUTURE WORK

In the utilization of ZORQ in DSA courses, an exploration
into ways for students to become skillful at creating ship
controllers within the system and methods to help students

understand ZORQ’s connection to DSA concepts is needed.
One option to be explored is providing an overview of ZORQ
earlier in the semester, to give students time to develop their
ideas about changes that they want to make and to help them
see the connections to the DSA concepts. The use of ZORQ
in other courses, such as SE and AI, also needs explored.

In terms of the ZORQ system implementation, students have
expressed a desire to have an option for their controller to
view the world through its front window. The specifications of
existing components could also be made configurable. Adding
a subsystem to allow users to easily add objects is being
considered. More unit testing is needed, and issues identified
by the coupling/cohesion analysis need addressed. Design
patterns are planned to be implemented where appropriate. The
benefits of the multi-threaded mode need to be investigated.
Testing the impact on efficiency when using parallel CPU
processing needs conducted. There are additional updates
being considered, such as making the universe size based on
number of controllers and allowing the system to randomly
select controllers. Setting up controllers to run as micro-
services is being considered. There are future plans to make
ZORQ available from the code repository, with a formalized
initialization and installation process for other schools to use.
There are future plans to use deep learning to create controllers
by learning from the state of the system and how well existing
controllers performed.

A deeper exploration of ZORQ as a Dynamic Gamification
[6] framework is needed. Additionally, studying ZORQ by
adopting a mixed-method analysis, with quantitative, qualita-
tive and sentiment analysis would add to a deeper understand-
ing of ZORQ and to how gamification could improve learning,
critical thinking and retention [24]. Finally, a systematic study
of the impact of using a GDGF on student performance in
later courses should be examined.

VII. CONCLUSION

In summary, a GDGF named ZORQ was introduced, and
a preliminary study of student experiences was presented.
ZORQ is a novel combination of Game Development-Based
Learning and Dynamic Gamification that enables a streamlined
phase-based, iterative process where students collaborate to
create a unique instance of a GDGF, then independently
design and implement a ship controller, followed by a testing
phase where each student’s autonomous controller moves in
the confines of the gamified environment. After experiencing
the environment, students can cycle back to the previous
GDBL phases. ZORQ provides students with a high level
of engagement with the system and a high level of social
engagement in its collaborative customization.

The preliminary results provide evidence that the primary
aims for the ZORQ GDGF (to increase student engagement
and success within undergraduate CS education) have been
met. This study shows that meaningful gamification in un-
dergraduate CS education can be achieved, when student
engagement is through coding within the gamification system
itself, as demonstrated with ZORQ.



REFERENCES

[1] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: defining ’gamification’,” in Proceedings of the
15th international academic MindTrek conference: Envisioning future
media environments. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 9–15.

[2] A. Hellerstedt and P. Mozelius, “Game-based learning: A long history,”
in Irish Conference on Game-based Learning 2019, Cork, Ireland, June
26-28, 2019, vol. 1. Cork, Ireland: Irish Conference on Game-Based
Learning, 2019, pp. 1–4.

[3] K. Becker and S. Nicholson, “Gamification in the classroom: Old wine
in new badges,” Learning, education and games, vol. 61, pp. 61–85,
2016.

[4] B. Kim, “Gamification,” ALA TechSource, vol. 51, pp. 10–18, 2 2015.
[5] Z. Luo, “Educational gamification from 1995 to 2020: A bibliometric

analysis,” in 2021 the 6th International Conference on Distance
Education and Learning, ser. ICDEL 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 140–145. [Online].
Available: https://doi.org/10.1145/3474995.3475740

[6] A. M. Spanier, S. K. Weitl-Harms, and J. D. Hastings, “A classification
scheme for gamification in computer science education: Discovery of
foundational gamification genres in data structures courses,” in 2021
IEEE Frontiers in Education Conference (FIE). Lincoln, NE, USA:
FIE, 2021, pp. 1–9.

[7] A. Manzano-León, P. Camacho-Lazarraga, M. A. Guerrero, L. Guerrero-
Puerta, J. M. Aguilar-Parra, R. Trigueros, and A. Alias, “Between level
up and game over: A systematic literature review of gamification in
education,” Sustainability, vol. 13, no. 4, p. 2247, 2021.

[8] G. Kiryakova, N. Angelova, and L. Yordanova, “Gamification in educa-
tion,” in Proceedings of 9th International Balkan Education and Science
Conference, 2014.

[9] E. L. Deci and R. M. Ryan, “The “what” and “why” of goal pursuits:
Human needs and the self-determination of behavior,” Psychological
Inquiry, vol. 11, no. 4, pp. 227–268, 2000.

[10] A. Mishkin, “Applying self-determination theory towards motivating
young women in computer science,” in Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1025–1031. [Online]. Available: https://doi.org/10.
1145/3287324.3287389

[11] J. Nakamura and M. Csikszentmihalyi, “Flow theory and research,”
Handbook of positive psychology, vol. 195, p. 206, 2009.

[12] R. M. Ryan and E. L. Deci, “Self-determination theory,” Basic psycho-
logical needs in motivation, development, and wellness, 2017.

[13] J. Högberg, M. O. Ramberg, A. Gustafsson, and E. Wästlund, “Creating
brand engagement through in-store gamified customer experiences,”
Journal of Retailing and Consumer Services, vol. 50, pp. 122–130, 2019.

[14] W. Oliveira, J. Hamari, S. Joaquim, A. M. Toda, P. T. Palomino,
J. Vassileva, and S. Isotani, “The effects of personalized gamification on
students’ flow experience, motivation, and enjoyment,” Smart Learning
Environments, vol. 9, no. 16, pp. 14–26, 2022.

[15] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work? - a
literature review of empirical studies on gamification,” in 47th Hawaii
International Conference on System Sciences, Hawaii, USA, 2014, pp.
3025–3034.

[16] R. S. Alsawaier, “The effect of gamification on motivation and en-
gagement,” The International Journal of Information and Learning
Technology, vol. 35, no. 1, pp. 56–79, 2018.

[17] J. R. Warner, J. Childs, C. L. Fletcher, N. D. Martin, and M. Kennedy,
“Quantifying disparities in computing education: Access, participation,
and intersectionality,” in Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
619–625. [Online]. Available: https://doi.org/10.1145/3408877.3432392

[18] C. Broneak and J. Rosato, “Experiences of rural CS principles edu-
cators,” in 2021 Conference on Research in Equitable and Sustained
Participation in Engineering, Computing, and Technology (RESPECT),
2021, pp. 1–2.

[19] E. F. Churchill, “Is there a fix for impostor syndrome?” Interactions,
vol. 25, no. 3, p. 22–24, apr 2018. [Online]. Available: https:
//doi.org/10.1145/3197577

[20] W. Bian and W. A. Inge, “A guideline for game development-based
learning: A literature review,” Int. J. Comput. Games Technol., vol. 2012,
jan 2012. [Online]. Available: https://doi.org/10.1155/2012/103710

[21] D. Gibson and P. Jakl, Theoretical Considerations for Game-Based e-
Learning Analytics. Springer International Publishing, 2015, pp. 403–
416.

[22] Y. Kim, M. Glassman, and M. S. Williams, “Connecting agents:
Engagement and motivation in online collaboration,” Computers in
Human Behavior, vol. 49, pp. 333–342, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747563215002010

[23] D. Zhang and T. Clear, Shaping Behaviours Through Space and Place
in Gamified Virtual Learning Environments. Springer International
Publishing, 2015, pp. 331–354.

[24] R. S. Alsawaier, “Research trends in the study of gamification,” The
International Journal of Information and Learning Technology, vol. 36,
no. 5, pp. 373–380, 2019.

[25] M. D. Hanus and J. Fox, “Assessing the effects of gamification in
the classroom: A longitudinal study on intrinsic motivation, social
comparison, satisfaction, effort, and academic performance,” Computers
& Education, vol. 80, pp. 152–161, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131514002000

[26] P. Herzig, M. Ameling, B. Wolf, and A. Schill, Implementing Gamifica-
tion: Requirements and Gamification Platforms. Springer International
Publishing, 2015, pp. 431–450.

[27] S. Deterding, “Gamification: Designing for motivation,” Interactions,
vol. 19, no. 4, p. 14–17, jul 2012. [Online]. Available: https:
//doi.org/10.1145/2212877.2212883

[28] C. Pilkington, “A playful approach to fostering motivation in a distance
education computer programming course: Behaviour change and student
perceptions,” International Review of Research in Open and Distributed
Learning, vol. 19, no. 3, 2018.

[29] F. N. Larsen, “Robocode,” https://robocode.sourceforge.io, 2022, ac-
cessed: April 10, 2022.

[30] S. Harms and J. Hastings, “A cross-curricular approach to fostering
innovation such as virtual reality development through student-led
projects,” in 2016 IEEE Frontiers in Education Conference (FIE). Erie,
USA: FIE, Oct 2016, pp. 1–9.

[31] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler,” in SIGPLAN ’82, 1982.

[32] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[33] G. Booch, Object-Oriented Analysis and Design with Applications (3rd
Edition). USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[34] Q. Ltd, “CodeMR,” https://www.codemr.co.uk/, 2022, accessed: March
10, 2022.

[35] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of
the 2nd International Conference on Software Engineering, ser. ICSE
’76. Washington, DC, USA: IEEE Computer Society Press, 1976, p.
492–497.

[36] C. Almeida, M. Kalinowski, and B. Feijó, “A systematic mapping of
negative effects of gamification in education/learning systems,” in 2021
47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2021, pp. 17–24.

[37] B. Meyer, Object Oriented Software Construction. Prentice-Hall, 1988.
[38] code.org, “2021 state of computer science education,” https://advocacy.

code.org/2021 state of cs.pdf, 2021, accessed: June 16, 2022.
[39] B. Dorn, D. Babb, D. M. Nizzi, and C. M. Epler, “Computing on

the silicon prairie: The state of CS in Nebraska public schools,”
in Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 296–301. [Online].
Available: https://doi.org/10.1145/2676723.2677261

[40] A. Jaffray, C. Finn, and J. Nurse, “Sherlocked: A detective-themed
serious game for cyber security education,” in Human Aspects of
Information Security and Assurance, HAISA 2021, vol. 613, 2021, pp.
34–45.

[41] A. Ahmad, F. Zeshan, M. S. Khan, R. Marriam, A. Ali, and
A. Samreen, “The impact of gamification on learning outcomes of
computer science majors,” ACM Trans. Comput. Educ., vol. 20, no. 2,
apr 2020. [Online]. Available: https://doi.org/10.1145/3383456

https://doi.org/10.1145/3474995.3475740
https://doi.org/10.1145/3287324.3287389
https://doi.org/10.1145/3287324.3287389
https://doi.org/10.1145/3408877.3432392
https://doi.org/10.1145/3197577
https://doi.org/10.1145/3197577
https://doi.org/10.1155/2012/103710
https://www.sciencedirect.com/science/article/pii/S0747563215002010
https://www.sciencedirect.com/science/article/pii/S0360131514002000
https://doi.org/10.1145/2212877.2212883
https://doi.org/10.1145/2212877.2212883
https://advocacy.code.org/2021_state_of_cs.pdf
https://advocacy.code.org/2021_state_of_cs.pdf
https://doi.org/10.1145/2676723.2677261
https://doi.org/10.1145/3383456

	Introduction
	Game Development-Based Learning and Gamification
	ZORQ: A Game Development and Gamification Framework (GDGF)
	ZORQ's Evolution as an Educational Tool
	ZORQ Architecture
	Approach to delivering ZORQ as a Gamification Tool
	GDBL Phase I
	GDBL Phase II
	Gamification Phase


	ZORQ User Study
	Study Design
	User Study Results

	Discussion
	Future Work
	Conclusion
	References

