
An Empirical Evaluation ofModel-Based Case Matching and Adaptation1L. Karl Branting and John D. HastingsDepartment of Computer ScienceUniversity of WyomingLaramie, Wyoming 82071-3682fkarl,hastingsg@eolus.uwyo.eduAbstractRangeland ecosystems typify physical systems havingan incomplete causal theory. This paper describesCARMA, a system for rangeland pest managementadvising that uses model-based matching and adap-tation to integrate case-based reasoning with model-based reasoning for prediction in rangeland ecosys-tems. An ablation study showed that removing anypart of the CARMA's model-based knowledge dra-matically degraded CARMA's predictive accuracy. Bycontrast, any of several prototypical cases could besubstituted for CARMA's full case library withoutsigni�cantly degrading performance. This indicatesthat the completeness of the model-based knowledgeused for matching and adaptation is more importantto CARMA's performance than the coverage of thecase library. IntroductionOne of the most striking characteristics of humanproblem-solving behavior is the ability to exploit multi-ple knowledge sources and reasoning techniques. Thisability is important because most human problem solv-ing occurs in an environment of incomplete knowledge.Automating this ability requires techniques for inte-grating multiple problem-solving paradigms in a exi-ble manner.This paper describes an approach to integratingcase-based reasoning with model-based reasoning forthe task of predicting the behavior of complex andpoorly understood physical systems. Under this ap-proach, which is called model-based matching andadaptation, an incomplete causal model is used in as-sessing case similarity and adapting behavioral pre-dictions in light of case di�erences. The next sec-tion describes how the task of predicting the behav-ior of a complex and poorly understood biological sys-tem arises from the overall task of rangeland pest1We wish to acknowledge the invaluable assistance ofProfessor Je� Lockwood in the development of CARMAand of Scott Schell in providing a set of test cases. This re-search was supported in part by a grant from the Universityof Wyoming College of Agriculture.

management. The third section argues that a causalmodel that is insu�cient to permit precise simula-tion may nevertheless assist case-based reasoning. Thefourth section describes an implementation of model-based matching and adaptation in CARMA, a sys-tem for rangeland pest management. The �fth sectionsets forth an ablation study showing that each of theCARMA's model-based components makes a signi�-cant contribution to CARMA's predictive ability.The Rangeland Pest Management TaskOur interest in integrating CBR with other reasoningparadigms arose from a project to develop an advicesystem for ranchers on the management of rangelandgrasshopper infestations. Forage losses from grasshop-per infestations have a signi�cant economic impact,particularly in the mountain west. While grasshopperinfestations can be treated with pesticides, the ben-e�ts of pesticide application are often outweighed byits costs, particularly when loss of bene�cial insectsand other environmental damage is considered. Pro-viding advice about such infestations is a complex taskbecause rangeland ecology is poorly understood andvery complex. However, entomologists experienced inrangeland management routinely provide accurate ad-vice to ranchers.To clarify the problem-solving steps in the range-land pest management advising (RPMA) task, we per-formed a protocol analysis of problem solving by aprofessor and several graduate students of entomol-ogy at the University of Wyoming experienced at thistask. This protocol analysis indicated that entomolo-gist problem solving consists of the following stages:1. Determine whether grasshopper consumption willlead to competition with livestock for available for-age.(a) Estimate the proportion of available forage thatwill be consumed by grasshoppers.i. Infer relevant characteristics of the grasshopperinfestation, such as grasshopper species, develop-mental stage, and density, from observables.



ii. Determine the prototypical infestation case thatmost closely matches the current case.iii. Adapt the consumption estimate predicted bythe prototypical case based on the featural di�er-ences between the prototypical and current cases.(b) Compare the grasshopper consumption with theproportion of available forage needed by livestock.2. If there will be competition, determine what possibletreatment options are excluded by the conditions ofthe case, e.g., rainy conditions preclude the use ofcarbaryl bait, environmental sensitivity precludes allnonbiological treatments.3. Estimate the expected economic costs/bene�ts ofeach acceptable treatment option by determiningthe proportion of grasshoppers that would be pre-vented from further forage consumption and egg lay-ing under each treatment option, estimating the de-creased probability of infestation in subsequent yearsif a given proportion of grasshoppers were preventedfrom laying eggs, and calculating whether the ex-pected value of the bene�ts of each treatment out-weighs its costs.We have implemented this problem-solving processin a system termed CARMA (CAse-based Range Man-agement Adviser). This paper focuses on the compo-nents of CARMA that perform steps 1(a)ii and 1(a)iii,estimation of the proportion of available forage thatwill be consumed by grasshoppers. Making this esti-mation requires predicting the behavior of a rangelandecosystem, a physical system with an incomplete causalmodel.Behavioral Prediction with anIncomplete Causal ModelA causal model for the behavior of a physical systemis a model of the interactions among the componentsof the system that is capable of predicting or explain-ing the system's behavior. While many of the com-ponents of a rangeland ecosystem are known, the in-teractions among these components are only partiallyunderstood.Figure 1 sets forth the most important of the qualita-tive causal constraints that inuence forage consump-tion. Other information available for modeling range-land ecosystems includes the following:� The developmental stages of grasshoppers, including{ The average length of each stage.{ The proportion of lifetime consumption that oc-curs at each stage.{ The average attrition rate at each stage.� Some species of grasshoppers, termed overwintering,hatch late in the growing season, hibernate duringthe winter, and complete their development dur-ing the following growing season. Others, termednonoverwintering species, hatch, lay eggs and diewithin a single growing season.
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M+Figure 1: Qualitative relations in rangeland ecosys-tems.� The signi�cant production of forage at a location oc-curs during a speci�c portion of the growing season,termed the critical forage growing period, for thatlocation.Attempts have been made to construct large-scalenumerical simulation models for grassland ecosystems(Rodell 1978). While such models often provide insightinto the dynamics of ecosystems (Fedra 1991), thereis a general recognition that the interactions a�ectinggrasshopper population dynamics are too poorly un-derstood and too complex to permit precise predictionthrough numerical simulation (Lockwood & Lockwood1991; Pimm 1991; Allen & Hoekstra 1992).As mentioned above, our protocol analysis indicatedthat part of entomologists' process of predicting for-age consumption consists of comparing a new case toprototypical infestation cases. This suggests that ento-mologists use a case-based approach to this task. How-ever, entomologists are capable of generating detailedcausal explanations for their predictions, e.g., in termsof the qualitative constraints shown in Figure 1. Partof this ability may come from associating stereotyp-ical explanations with prototypical cases. However,



entomologists can easily generate causal explanationsof the e�ects of incremental variations on case facts.This strongly suggests that entomologists use the in-complete causal model to adapt and modify predictionsassociated with prototypical cases.In summary, the available causal model of rangelandpopulation dynamics is insu�cient to permit precisenumerical simulation. However, this causal model ap-pears to play an important role in entomologists' prob-lem solving, both in explanation and in adaptation ofthe predictions associated with prototypical cases. Au-tomating entomologists' problem-solving ability there-fore requires a computational mechanism for integrat-ing this incomplete causal model with case-based rea-soning.Using Model-Based Reasoning ToAssist Case-Based ReasoningCARMA is a system for advising ranchers about range-land grasshopper infestations. This section brieyoverviews CARMA's case-based reasoning componentand describes four di�erent ways in which CARMAuses a causal model to assist case-based reasoning:case factoring; temporal projection; featural adapta-tion; and critical period adjustment.Prototypical Infestation CasesSince our protocol analysis indicated that entomolo-gists estimate forage consumption by comparing newcases to prototypical infestation scenarios, we eliciteda set of prototypical cases from an entomologist expe-rienced at the RPMA task. These prototypical casesdi�er signi�cantly from conventional cases. First, theprototypical cases are not expressed in terms of observ-able features (e.g., \Whenever I take a step, I see 4 or5 grasshoppers with brightly colored wings y"), butrather in terms of abstract derived features (e.g., \Alow or moderate density of postwintering grasshoppersin the pre-adult stage"). Second, since entomologistssee a very large number of speci�c cases, the prototypesrepresent generalizations of multiple cases, rather thanspeci�c cases. As a result, the feature values of thesecases are often ranges rather than speci�c values (e.g.,low to moderate grasshopper densities and normal tohot temperatures). Finally, the prototypical cases areextended in time, representing the history of a partic-ular grasshopper population over its lifespan.CARMA's case library currently consists of eightprototypical cases. Each prototypical case is repre-sented by a \snapshot" at a particular, representativepoint in time selected by the entomologist. In general,this representative time is late enough in the seasonthat it is possible to determine the extent of the in-festation with some certainty, but early enough thatpesticide application is still feasible. An example pro-totypical case appears as Case8 in Table 1.

Case-Based Prediction of ForageConsumptionCARMA begins the process of predicting forage con-sumption by prompting the user for the observable fea-tures of the infestation. A series of rules are used toinfer the relevant case features, such as the species,density, and developmental stage of the grasshoppers.Factoring Cases Into Subcases A tract of range-land often contains multiple, distinct grasshopper pop-ulations composed of species whose consumption char-acteristics vary greatly. Speci�cally, overwinteringgrasshoppers, which divide their consumption betweentwo growing seasons, consume far less during thecritical forage growing season than nonoverwinteringgrasshoppers. CARMA therefore factors the overallpopulation of a case into subcases according to winter-ing types.CARMA uses a model of grasshopper developmentalstages to estimate the probable hatch and death datesof each grasshopper population given the current de-velopmental stage, growing season dates for the loca-tion, and current date. If the hatch date occurs beforethe current growing season or the death date occursafter the current season, CARMA concludes that thegrasshopper population is overwintering. Otherwise,the population is determined to be nonoverwintering.For example, the new case set forth in Table 1 is splitinto two subcases, SubcaseA and SubcaseB, based onwintering types.Temporal Projection To predict the forage lossof a subcase, CARMA �rst retrieves all prototypicalcases whose wintering type matches that of the sub-case. Since prototypical cases are extended in timebut are represented at a particular time, matching re-quires temporally projecting the prototypical cases for-wards or backwards to match the average developmen-tal stage of the new subcase. This requires simulat-ing grasshopper attrition, which depends on develop-mental stage, precipitation, and developmental speed,which in turn depends on temperature, throughout theinterval of the projection. An example appears in Fig-ure 2.The projected prototypical case whose weighted fea-tural di�erence from the new case is least is selectedas the best match. Feature weights are set using ahill-climbing algorithm that optimizes CARMA's pre-dictive accuracy on training instances. For example,the prototypical case that best matches SubcaseA af-ter projection is Case8, as shown in Table 1. Becausethe developmental stage of Case8 before projection islater than that of SubcaseA, Case8 must be projectedbackwards in time, causing grasshoppers that had beenlost to attrition to be added back to the population.Temporal projection aligns developmental stages butnot necessarily dates. For example, the date of Case8after projection is later than the date of SubcaseA be-cause the hatch date of Case8 was later than that of



Case8 New case Case8SubcaseA SubcaseB after projectionWintering type prewintering prewintering nonoverwintering prewinteringFeeding types grass 100% grass 40% grass 100% grass 100%mixed 60%Average stage 2.0 1.2 7.0 1.2Density (mod) = (10 14) 13.0 7.0 (11.2 15.6)Date September 8 August 20 September 2Precipitation (normal) dry (normal)Temperatures (normal) cool (normal)Infest. history (low mod-low mod) mod (low mod-low mod)Range value (low mod-low mod) high-mod (low mod-low mod)Forage loss (low mod-low) ? (low mod-low)Table 1: Case examples.
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PCFigure 2: Projection of a prototypical case from PCto PC0 to align its developmental stage with new caseNC.SubcaseA. As a result, the developmental stage of thegrasshoppers in SubcaseA on August 20 are the sameas those of Case8 two weeks later on September 2.Featural Adaptation The consumption predictedby the best matching prototypical case is modi�ed toaccount for any featural di�erences between it and thesubcase. This adaptation is based on the inuence ofeach feature on consumption as represented by globalfeature weights. For example, a lower temperaturevalue means lower forage losses, because lower temper-atures tend to slow developmental speed, increasinggrasshopper attrition. Thus, the forage loss estimatepredicted by Case8|(low mod-low)|must be adapteddownward somewhat to account for the fact that tem-peratures in SubcaseA (cool) are lower than in Case8(normal).The feature weights used in featural adaptation con-stitute a linear approximation of the function fromderived case features to consumption amounts in the

neighborhood of each prototypical case.Critical Period Adjustment Consumption is onlydamaging if it occurs during the critical forage grow-ing period of a rangeland. The forage loss predictedby a prototypical case must be modi�ed if the propor-tion of the lifespan of the grasshoppers overlapping thecritical period di�ers signi�cantly in the new case fromthe proportion in the prototypical case. This process,termed critical period adjustment, requires determin-ing the developmental stages of the new and prototyp-ical cases that fall within the critical period and theproportion of lifetime consumption occurring in thesedevelopmental stages.An example of critical period adjustment appears inFigure 3. Because grasshopper development in Sub-caseA is ahead of that in Case8 (SubcaseA's devel-opmental stage on August 20 corresponds to Case8'sdevelopmental stage on September 2), CARMA deter-mines that SubcaseA applies to more of the criticalperiod than Case8 because it will reach stage 5 by theend of the critical period, while Case8 will only reachstage 2. CARMA uses a model of grasshopper's rateof consumption at each developmental stage to calcu-late the proportion of lifetime consumption occurringbefore the end of the critical period. For example, 47%of SubcaseA's consumption occurs during the criticalperiod, whereas only 6% of Case8's consumption oc-curs within this period. CARMA therefore scales theinitial consumption estimate by (47 / 6) = 7:8.After adaptation, the consumption predictions foreach subcase (i.e., behaviorally distinct populationof grasshoppers) are summed to produce an over-all consumption estimate. In the given case, thesum of predicted consumption of the two subcases ishigh-moderate.In summary, CARMA uses model-based reasoningin four di�erent ways to assist case-based reasoning.First, a model of grasshopper developmental stages isused to estimate probable hatch and death dates in
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TimeFigure 3: Critical period adjustment from Case8 toSubcaseA.order to factor the new case into behaviorally distinctsubcases. Second, a model of grasshopper attrition isused in temporal projection to simulate the attritionthat would have occurred during the interval betweenthe date of the new case and the representative date ofthe prototypical case. Third, featural adaptation con-stitutes a linear approximation of the function fromderived case features to consumption amounts in theneighborhood of each prototypical case. Finally, criti-cal period adjustment modi�es the prediction estimateto take account of any di�erence in overlap betweengrasshopper lifespans and the critical forage growingseason. EvaluationWe performed an evaluation to determine the relativecontribution of empirical (i.e., case-based) and model-based knowledge to the performance of CARMA's con-sumption prediction module. To determine the con-tribution of model-based knowledge, we performed anablation study in which the performance of the fullCARMA consumption prediction module was com-pared to the performance of CARMA with variousmodel-based components removed and to two di�er-ent inductive methods: ID3 (Quinlan 1986) and least-squares linear approximation. To determine the con-tribution of empirical knowledge, the performance ofCARMA was tested with the full multiple case libraryreplaced with single case libraries.The experimental case sets included ProtoL, Set1,and Set2. ProtoL is a library of eight prototypical casesgenerated by an entomologist, consisting of two over-wintering cases and six nonoverwintering cases. Set1consists of 15 cases generated by the same entomolo-gist. Set2 contains 48 test cases whose features wererandomly generated and whose forage loss predictionswere estimated by a second entomologist.Experimental DesignCARMA was tested using ProtoL as its case library.CARMA's global feature weights, used both in casematching and in adaptation, were tuned using a hill-climbing algorithm to optimize CARMA's overall pre-dictive accuracy on Set1. The ablated versions of

CARMA used the same global feature weights and caselibrary as the full system.ID3 was given ProtoL and Set1 as training in-stances. Because prototypical case features containranges, cases in ProtoL were treated as pairs of caseswith the feature values associated with the minimumand maximum forage loss predictions of each prototyp-ical case.The linear approximation approach consists of a lin-ear equation for forage consumption as a function ofcase feature values represented in quantitative terms.The coe�cients of this equation were found using QRfactorization (Hager 1988) to �nd a least-squares �tto the feature values and associated predictions of thecases in Set1 and ProtoL. As with ID3, ProtoL caseswere treated as consisting of two cases correspondingto the minimum and maximum forage loss predictionsof each prototypical case.The single case library approach was evaluated bytesting CARMA with the full case library replaced byindividual members of ProtoL. These tests used thesame global feature weights as the full system.The accuracy of each approach was tested by com-paring its forage loss prediction for each case in Set2with the prediction of the expert. The qualitative dif-ference between two forage loss predictions was calcu-lated as the number of categories by which the predic-tions di�er in the ordered set flow, low-moderate,moderate, high-moderate, and highg, so that lowdi�ers from high by four categories, the maximumpos-sible qualitative di�erence. The results, which appearin Table 2, include the total qualitative error (qualita-tive di�erence between the prediction of the approachand the expert over all the test cases), the total num-ber of incorrect predictions, and the average qualitativeerror per test case.Because the maximum possible qualitative error isfour (e.g., low instead of high), a constant predictionof moderate consumption could never be o� by morethan two qualitative categories. A constant predictionof moderate is included for purposes of comparison.DiscussionCARMA's average qualitative error was :42, as com-pared to an average error of 1:67 for a constant pre-diction of moderate consumption.1 Removal of model-based knowledge signi�cantly degraded CARMA's per-formance. CARMA's error rate was almost doubled byremoval of featural adaptation (:79), removal of pro-jection and critical period adjustment (:83), or by re-moval of all three (:85). CARMA was not tested withcase factoring disabled. However, ID3's performanceon unfactored cases, 1:00, was lower than CARMA's1This error for a constant prediction is higher than thevalue expected if the expert predictions were uniformly dis-tributed across the �ve qualitative categories. However,the expert predictions were skewed towards high and lowpredictions.



Total error Total number Average error(qualitative) incorrect (qualitative)CARMA 20 15 .42Constant pred. 80 46 1.67Ablation of Model-Based KnowledgeCARMA w/o FA 38 23 .79CARMA w/o CPA,P 40 24 .83CARMA w/o FA,CPA,P 41 28 .85ID3 48 28 1.00Linear approx. 57 23 1.15Reduced Case LibraryCase1 39 27 .81Case2 65 26 1.35Case3 23 17 .48Case4 50 29 1.04Case5 77 25 1.60Case6 23 15 .48Case7 25 18 .52Case8 24 15 .50Average 40.8 21.5 .85Table 2: Summary of test results. P, FA, and CPA represent projection, featural adaptation, and critical periodadjustment, respectively.performance with all model-based reasoning other thancase factoring disabled, suggesting that case-factoringis also an important requirement for performance inthis domain.Featural adaptation assumes that the function forforage consumption can be approximated by a linearequation in the neighborhood of prototypical cases.Given the large contribution of featural adaptation toCARMA's performance, it seems reasonable to wonderwhether the forage consumption function can be glob-ally approximated by a linear equation. However, theperformance of the linear approximation (1:15) indi-cates that a linear function for consumption as a func-tion of case features is a poor predictor.The results of the reduced case library tests surpris-ingly indicate that a CARMA case library consisting ofonly Case6 or Case8 produced as many correct predic-tions as a library containing the multiple prototypicalcase set ProtoL, although the average qualitative erroris slightly higher. One contributor to this high perfor-mance may be that the prototypical cases have rangesof values for many features and therefore e�ectivelyrepresent multiple cases. However, this result indicatesthat the completeness of the model-based knowledgeused for matching and adaptation is more important toCARMA's performance than the coverage of the caselibrary.The e�ectiveness of model-based adaptation is illus-trated particularly vividly by the fact that a case li-brary consisting solely of Case8 performed nearly aswell as the full case library. This result was unex-

pected because Case8 is an overwintering prototypicalcase with low predicted consumption (because mostof the lifespan of the grasshoppers occurs outside ofthe critical forage growth period), while most of thecases in Set2 contain nonoverwintering grasshopperswith much higher predicted consumption.Future WorkThe most important weakness of the current imple-mentation of CARMA's forage consumption predictionmodule is that it uses a single set of global featureweights for matching and for featural adaptation. Evenif the consumption function can be approximated bya linear function in the neighborhood of prototypicalcases, as assumed in featural adaptation, it doesn't fol-low that the same linear function is appropriate for allprototypical cases. Indeed, the observed poor perfor-mance of global linear approximation, shown in Table2, suggests that linear approximations, and thereforefeature weights, should be speci�c to individual pro-totypical cases. Moreover, while it is plausible thatfeature weights for matching should be the same asfeature weights for adaptation, this hypothesis has notbeen tested. Thus, an important piece of future workis to test case-speci�c adaptation and matching featureweights.An important limitation of the evaluation reportedhere is that the consumption predictions associatedwith Set2 were produced by a di�erent entomologistthan the entomologist from whom the prototypical



cases were elicited. As a result, there may be incon-sistencies between the testing set and the library ofprototypical cases. We have subsequently obtained aset of 32 test cases produced by USDA entomologistsexperienced in this task and by the entomologist whowas the source of the prototypical cases. This shouldpermit a more reliable evaluation of CARMA's con-sumption estimation module.Related WorkSeveral previous research projects have investigatedthe bene�ts of integrating case-based reasoning withmodel-based reasoning. However, these projects havegenerally assumed the existence of a correct and com-plete causal model. For example, CASEY (Koton1988) performed diagnosis using model-based reason-ing to assist both case matching and case adaptation.However, CASEY presupposed both the existence ofa complete causal theory of heart disease and com-plete explanations of each case in terms of that the-ory. Because the causal model in CARMA's domainis insu�cient for accurate prediction and the causalexplanations associated with cases are incomplete, theassumptions underlying CASEY's matching and adap-tation strategies are inapplicable to CARMA's domain.Rajamoney and Lee (Rajamoney & Lee 1991) useda di�erent approach to integrating case-based reason-ing with model-based reasoning termed prototype-basedreasoning. This approach uses a library of proto-types to decompose problems into familiar subprob-lems. Model-based reasoning is applied to the sub-problems, a consistent composition of the subprob-lems is determined, and model-based reasoning is ap-plied to determine the behavior of the resulting sim-pli�ed model. As with CASEY, this approach presup-poses a complete and correct (though not necessarilytractable) causal model. Similarly, Goel and Chan-drasekaran's approach of using device models to adaptdesign cases presupposes that the device models arecomplete and correct (Goel & Chandrasekaran 1989).Feret and Glascow (Feret & Glascow 1993) describean alterative approach under which model-based rea-soning is used for \structural isolation", i.e., identi�ca-tion of the structural components of device that prob-ably give rise to the symptoms of a fault. Cases are in-dexed by these tentative diagnoses, which are then re-�ned using case-based reasoning. This approach, whileappropriate for diagnosis, is ill-suited for behavioralprediction in the absence of faults.ConclusionThis paper has described CARMA, a system that inte-grates case-based reasoning with model-based reason-ing for prediction in rangeland ecosystems. CARMAuses four di�erent mechanisms for model-based match-ing and adaptation: case factoring; temporal projec-tion; featural adaptation; and critical period adjust-ment. An empirical evaluation showed that remov-
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