Global and Case-Specific Model-based Adaptation

John D. Hastings and L. Karl Branting
Department of Computer Science
University of Wyoming
Laramie, Wyoming 82071-3682

Abstract
CARMA (CAse-based Range Management Adviser)

is a system that integrates case-based reasoning with
model-based reasoning for rangeland pest manage-
ment. CARMA’s predictions of rangeland forage
loss by grasshoppers were compared to predictions
by 15 expert entomologists using either global or
case-specific adaptation weights. Under both condi-
tions, CARMA’s predictions were more accurate than
CARMA’s case-based and model-based components
in isolation. However, CARMA’s case-specific adap-
tation weights were consistently more accurate than
global adaptation weights. The experimental results
suggest that case-specific adaptation weights are more
appropriate in domains that are poorly approximated
by a linear function.

Introduction

Model-based case adaptation is a technique in which
a domain model is used to assist in adapting solu-
tions associated with past cases to apply to new prob-
lems (Goel 1991). Most previous implementations of
model-based adaptation have assumed the existence of
a complete and accurate domain model (Koton 1988;
Goel 1991; Rajamoney & Lee 1991). The purpose of
model-based case adaptation in these systems is to re-
duce the search associated with a complex model.

However, models of biological, ecological, and other
natural systems are often incomplete, either because a
complete state description for such systems cannot be
determined or because the number and type of interac-
tions between system elements are poorly understood.
Moreover, such systems often lack sufficient data for
effective use of empirical methods, such as case-based
reasoning, decision-tree induction, or statistical tech-
niques. In such systems, model-based case adaptation
provides a mechanism to combine multiple, individu-
ally incomplete, knowledge sources to increase predic-
tive accuracy.

This paper describes model-based case adaptation in
CARMA (CAse-based Range Management Adviser),
a system that integrates case-based reasoning with
model-based reasoning for rangeland pest manage-
ment. Rangeland pest management is a task requiring

predictions in a biological system characterized both
by an incomplete model and insufficient empirical data
for accurate use of empirical techniques. Part of this
task requires predicting the probable forage consump-
tion by grasshoppers in an infestation.!

CARMA contains a detailed model of grasshopper
development phases, consumption, reproduction, and
attrition. However, this model contains parameters,
termed “featural adaptation weights”, representing the
relative importance of case features to total forage con-
sumption, whose precise values are not known a priori,
but must be acquired inductively. Featural adaptation
weights may either be global, applying to the entire
case library, or case-specific, with separate weights ap-
plying to each case. Whether global or case-specific is
better depends on whether the feature weights apply
to the entire instance space or are instead specific to
portions of feature space corresponding to one or more
cases. If the former, case-specific weights might lead
to overfitting. If the latter, no effective set of global
weights will exist.

The next section describes how CARMA performs
model-based case adaptation. CARMA’s procedure
for learning match and adaptation weights is then de-
scribed. The final section describes an experimental
evaluation in which CARMA’s predictions of range-
land forage consumption by grasshoppers were com-
pared to predictions by 15 expert entomologists using
either global or case-specific adaptation weights. Un-
der both conditions, CARMA’s predictions were more
accurate than CARMA’s case-based and model-based
components in isolation. However, case-specific adap-
tation weights were consistently more accurate than
global adaptation weights.

Model-Based Adaptation in CARMA

Rangeland pest management is the task of determining
the most cost-efficient response to a grasshopper infes-
tation. This task is important because in the western
United States grasshoppers annually consume 21-23%

! A detailed description of the rangeland pest manage-
ment task is set forth in (Branting & Hastings 1994) and
(Hastings, Branting, & Lockwood 1995).



of rangeland forage at an estimated loss of $400 mil-
lion (Hewitt & Onsager 1983). Rangeland grasshopper
infestations can be treated with chemical or biological
insecticides, but in many situations the costs of insec-
ticide application exceed the value of the forage saved.

Rangeland pest management requires predicting the
forage savings that would ensue from each response
and comparing the savings to the cost of the response
itself. A central step in determining the most cost-
efficient response is estimating the proportion of avail-
able forage that will be consumed by grasshoppers. A
protocol analysis of entomologists experienced in pest
management indicated that they estimate forage con-
sumption by comparing new cases to prototypical in-
festation scenarios.

CARMA’s case library consists of prototypical cases
that differ from conventional cases in two important
respects. First, the prototypical cases are not ex-
pressed in terms of observable features (e.g., “When-
ever | take a step, I see 4 grasshoppers with brightly
colored wings fly”), but rather in terms of abstract de-
rived features (e.g., “Approximately 6 nymphal over-
wintering grasshoppers in the adult phase per square
yard”). Second, the prototypical cases are extended in
time, representing the history of a particular grasshop-
per population over its lifespan. Each prototypical case
is therefore represented by a “snapshot” at a particu-
lar, representative point in time selected by the ento-
mologist. In general, this representative point is one at
which the grasshoppers are at a developmental phase
in which treatment is feasible.

CARMA begins a consultation by eliciting informa-
tion that can be used to infer the relevant features of a
new case. When the relevant case features have been
determined, CARMA predicts forage loss by using a
causal model to assist case-based reasoning in four dif-
ferent ways:? case factoring; temporal projection; fea-
tural adaptation; and critical-period adjustment.
Factoring Cases into Subcases. CARMA’s con-
sumption prediction module first splits the overall pop-
ulation into subcases of grasshoppers with distinct
overwintering types (i.e., overwintering as nymphs or
eggs), since the forage consumption by those that over-
winter as nymphs is much different from those that
overwinter as eggs. CARMA uses a model of grasshop-
per developmental stages to estimate the hatch date
and probable death date of each grasshopper popula-
tion given the current developmental stage, growing
season dates for the location, and current date.
Temporal Projection. To predict the forage loss
of a subcase, CARMA first retrieves all prototypical
cases whose overwintering types match that of the sub-
case. Since prototypical cases are extended in time but
are represented at a particular time, matching requires
temporally projecting the prototypical cases forwards

2A detailed example of the application of these model-
based adaptation techniques to a specific case appears in
(Hastings, Branting, & Lockwood 1995).

or backwards to align the average developmental phase
of the new subcase. This requires using the model to
simulate grasshopper attrition, which depends on de-
velopmental phase, precipitation, and developmental
rate (which in turn depends on temperature) through-
out the interval of the projection.

The projected prototypical case having the lowest
weighted featural difference from the new case is se-
lected as the best match.

Featural Adaptation The consumption predicted
by the best matching prototypical case is modified to
account for any featural differences between it and the
subcase. This adaptation is based on the influence of
each feature on consumption as represented by featural
adaptation weights. For example, a lower temperature
value means lower forage losses, because lower temper-
atures tend to slow developmental speed, increasing
grasshopper attrition.

Critical-Period Adjustment Consumption is only
damaging if it occurs during the critical forage grow-
ing period of a rangeland habitat. The forage loss pre-
dicted by a prototypical case must be modified if the
proportion of the lifespan of the grasshoppers overlap-
ping the critical period differs significantly in the new
case from the proportion in the prototypical case. This
process, termed critical-period adjustment, requires de-
termining the developmental phases of the new and
prototypical cases that fall within the critical period
and the proportion of lifetime consumption occurring
in these developmental phases. The critical period of
a specific parcel of rangeland is determined from the
parcel’s latitude and altitude. CARMA uses a model
of grasshopper’s rate of consumption at each develop-
mental phase to calculate the proportion of lifetime
consumption occurring before the end of the critical
period. After adaptation, the consumption predictions
for each subcase (i.e., distinct overwintering types) are
summed to produce an overall quantitative consump-
tion estimate.

In summary, CARMA uses a model of grasshopper
developmental phases, consumption, and attrition, and
a model of a rangeland’s critical forage growth period
for adaptation of the cases in its library. This adapta-
tion is used both to determine the degree of relevant
match between cases and to modify the consumption
predictions associated with a prototypical case to ap-
ply to a new case.

Learning Match and Adaptation
Weights

CARMA uses two sets of weights in case-based reason-
ing: match weights (used to assess case similarity); and
featural adaptation weights (used to adapt the con-
sumption predicted by the best matching prototypical
case in light of any featural differences between it and
the subcase). General domain knowledge, such as the
identifying characteristics and developmental phases of
grasshoppers, can be provided by the domain expert.



By contrast, match and featural adaptation weights
must be acquired by the system itself.

Match Weights

Match weights are set by determining the mutual in-
formation gain between case features and qualitative
consumption categories in a given set of training cases.
Mutual information gain is used because recent re-
search has indicated that it is often an accurate mea-
sure of featural importance for matching (Wettschereck
& Dietterich 1995). Separate match weights are com-
puted for each grasshopper overwintering type for the
case features precipitation, temperature, range
value, infestation history, average
developmental phase, density, and feeding 1:ype.3

Quantitative features, such as density, are con-
verted to qualitative values for computation of mu-
tual information gain, since small quantitative varia-
tions appeared to make little contribution to matching
in CARMA. The matching feature difference between
two individual feature values is determined by finding
the difference between the positions of the values in an
ordered qualitative feature value list. The similarity
of two cases is determined by summing each individ-
ual feature difference multiplied by the corresponding
match weight.

Adaptation Weights

Featural adaptation weights are set by a hill-climbing
algorithm, AdaptWeights, that incrementally varies
adaptation weights A to minimize the root-mean-
squared error (RMSE), i.e.,

1/n Z[PFL(C’Z', P, M, A) — ExpertPred(C;)]?

i=1

for prototypical case library P and match weights M,
where PFL(C;, P, M, A) is CARMA’s predicted for-
age loss and ExpertPred(C;) is expert’s prediction of
consumption for each training case Cj.

Separate adaptation weights are computed for
each grasshopper overwintering type for the six fea-
tures precipitation, temperature, range value,
infestation history, density, and feeding type.
CARMA can learn featural adaptation weights in ei-
ther of two modes: global, in which a single set of
weights are acquired for the entire case library; or case-
specific, in which separate weights are acquired for each
prototypical case

®A match weight is necessary for developmental phase
even though temporal projection typically aligns the devel-
opmental phases of the cases because temporal projection
is limited to 2 weeks in the match phase. The purpose
of this limitation is to bias matches towards cases with
similar developmental phases. However, in the adaptation
stage, any remaining misalignment in developmental stages
is eliminated by continuing temporal projection until the
developmental phases are completely aligned.

In computing the featural adaptation weights, quali-
tative case features (such as precipitation = “Dry”) are
converted into quantitative values based on the posi-
tion of the value in an ordered qualitative feature value
list. An adaptation feature difference is computed as
the difference between the quantitative feature values
of the two cases. The consumption prediction of the
matching prototypical case is adjusted by the sum of
the adaptation feature differences multiplied by the
adaptation weights for each feature.

Evaluation

The design of CARMA’s forage consumption compo-
nent was based on the following hypothesis:

Hypothesis 1. An integration of model-based
and case-based reasoning can lead to more accu-
rate forage consumption predictions than the use
of either technique individually.

This hypothesis is based on the observation that nei-
ther the causal model nor the empirical data available
for rangelands is individually sufficient for accurate
prediction.

The task of consumption prediction can be viewed
as simulating a function from case features to forage
consumption. QOur second hypothesis was the follow-
ing:

Hypothesis 2. The relative performance of

global and case-specific adaptation weights in

CARMA depends upon how closely the function

from case features to forage consumption can be

approximated by a linear function.

The rationale for this hypothesis is that featural adap-
tation consists, in effect, of a linear approximation of
the forage consumption function in the vicinity of each
prototypical case after it has been adapted by case fac-
toring and temporal projection. Use of global adap-
tation weights rests on the assumption that the for-
age consumption function can be approximated by the
same linear function in the vicinity of every case. Use
of case-specific weights, by contrast, is based on the
assumption that a separate linear function is required
to approximate the forage consumption function in the
vicinity of each case. The danger of the latter assump-
tion is that if there are few training cases the adapta-
tion weights may suffer from overfitting.

Little empirical data was available to serve as a mea-
sure of CARMA’s predictions. We therefore turned to
expert human judgments as an external standard. To
obtain a representative sample of expert opinions, we
sent questionnaires to 20 entomologists recognized for
their work in the area of grasshopper ecology. Each ex-
pert received 10 hypothetical cases randomly selected
from a complete set of 20 cases. The descriptions of the
20 cases contained as much or more information than
is typically available to an entomologist from a rancher
seeking advice. The questionnaire asked the expert to
make several predictions about the case, including the



predicted quantitative forage loss. A total of 15 re-
cipients of the questionnaire responded. The resulting
experimental case sets comprised the 15 sets of expert
responses consisting of 10 cases each (the Ezpert Sets),
a set of 20 cases representing the median of the ex-
perts’ prediction on each case (the Median Set), and
ProtoL, the library of 19 prototypical cases generated
by an independent entomologist.

A complication introduced by the use of expert hu-
man judgments as an evaluation standard is the possi-
bility that in making consumption predictions human
experts fail to use of all aspects of the model of grass-
land ecology. To test this possibility, we performed a
preliminary ablation study in which we tested the effect
on predictive accuracy of removing each form of adap-
tation knowledge from CARMA. The configurations of
CARMA (for both specific and global weights schemes)
with the highest predictive accuracy were then used as
the full CARMA system.

To test Hypothesis 1, we separated CARMA’s em-
pirical and model-based knowledge components, tested
each in isolation on the Expert and Median sets, and
compared the results to the performance of CARMA
using both global and case-specific adaptation weights.
To test the Hypothesis 2, we determined the extent to
which the Expert and Median sets could be approxi-
mated by a linear equation and compared this to the
degree to which global and case-specific adaptation im-
proved accuracy beyond simple nearest-neighbor pre-
diction.

Experimental Design

Each predictive method was tested using a series of
leave-one-out tests in which a set of cases (S) was split
into one test case (C) and one training set (S - C). The
methods were trained on the forage loss predictions
of the training set and tested on the test case. This
method was repeated for each case within the set (S).
The forage loss predictions (between 0% and 100%)
represent the proportion of available forage that would
otherwise be available for livestock, but will instead be
consumed by grasshoppers.

CARMA’s global and case-specific adaptation
weight methods were initially tested using leave-one-
out testing with Protol. as its case library and the
Median Set as the test set. However, CARMA’s per-
formance was disappointing. Analysis of the source
of errors revealed inconsistencies between prototypi-
cal cases in Protol, and in the Median Set. Cases in
the two sets with nearly identical features often had
very different predictions. These inconsistencies could
not be overcome by any set of adaptation weights and
led to instability in adaptation weights: adaptation
weights sometimes varied by as much as a factor of
35,000 from one leave-one-out-test to another within
a single training set. We therefore abandoned ProtoL
and shifted to a protocol under which each set of train-
ing cases is used as CARMA’s library of prototypical

cases.

This protocol is implemented in LeaveOneQut-
SpecificTest and LeaveOneOutGlobalTest, which
perform the leave-one-out tests for the specific and
global adaptation weights schemes, respectively. Both
procedures call AdaptWeights, the hill-climbing algo-
rithm described above. LeaveOneOutSpecificTest
calls AdaptWeights with a prototypical case library
containing only one case.

function LeaveOneOutSpecificTest(7')

1 for each case C;e¢T do

2 P:=T-C; ;prototypical cases

3 M := global match weights for set P
according to info. gain

4 for each prototypical case P;eP do
5 T:=P—-PF ;training set
6 P;(A) := AdaptWeights(T, {P;}, M)
7 D; := (PredictForageLoss(C;, P, M)
— ExpertPred(C;))?
8 return ( \/Avg(D))

function LeaveOneOutGlobalTest(T)
1 for each case C;eT do

2 P:=T-C; ;prototypical cases

3 M := global match weights for set P
according to info. gain

4 GG := AdaptWeights(P, P, M)

5 D, := (PredictForageLoss(C;, P, M, ()
— ExpertPred(C;))?

6 return ( \/Avg(D))

Ablation Experiment. An ablation study was per-
formed to determine the combination of adaptation
knowledge sources leading to the highest predictive
accuracy. In this study, the full CARMA system
was compared to CARMA’s performance with vari-
ous adaptation mechanisms disabled. The first col-
umn of Table 1 shows CARMA’s average root-mean-
squared error over the 15 expert sets using case specific
weights (CARMA-specific). Columns two and three
show CARMA-specific with, respectively, projection
and critical period adjustment removed, and column
four shows CARMA with featural adaptation removed.
The performance of factored nearest-neighbor predic-
tion (factored-NN), i.e., CARMA with projection, fea-
tural adaptation, and critical period adjustment all
removed,? is shown in column five.

These data show that full CARMA-specific ac-
tually performs worse than factored-NN. Removing
projection or featural adaptation makes performance
still worse, but removing critical period adjustment
makes CARMA’s performance better than factored-
NN. From this, we conclude that critical period adjust-

*Under this approach, cases are first factored into popu-
lations with distinct overwintering types, 1-NN prediction
is performed for each population, and the resulting con-
sumption predictions for all populations are summed.



ment does not accurately reflect the problem-solving
behavior of human experts in this predictive task.

Columns six and seven show CARMA using global
weights (CARMA-global). As with CARMA-specific,
CARMA-global is more accurate with critical period
adjustment removed. However, CARMA-global with
critical period adjustment removed, while more accu-
rate than factored-NN, is less accurate than CARMA-
specific with critical period adjustment removed.

In summary, the ablation experiment showed that
projection and featural adaptation each increased pre-
dictive accuracy but critical period adjustment de-
creased accuracy. Accordingly, in the evaluation of the
experimental hypotheses CARMA was tested with crit-
ical period adjustment disabled.

Comparison of CARMA with Empirical and
Model-based Approachs. CARMA’s empirical
component was evaluated by performing leave-one-
out-tests for the factored-NN approach using match
weights determined from mutual information gain
within each training set. This approach is equivalent
to running CARMA with model-based adaptation dis-
abled. The linearity of the Expert Sets and the Me-
dian Set was determined by linear approximation, an
inductive method which consisted of using QR factor-
ization(Hager 1988) to find a least-squares fit to the
feature values and associated predictions of the train-
ing cases. An additional inductive approach to using
CARMA’s empirical knowledge, decision tree induc-
tion using ID3%, was also tested.

The predictive ability of CARMA’s model-based
component in isolation was evaluated by developing
a numerical simulation based on CARMA’s model of
rangeland ecology. This simulation required two forms
of knowledge implicit in CARMA’s cases: the forage
per acre based on the range value of the location; and
the forage typically eaten per day per grasshopper for
each distinct grasshopper overwintering type and de-
velopmental phase.

The simulation® predicts the forage consumed for
each day by projection based on the density, develop-
mental phases, and forage eaten per day per grasshop-
per for each overwintering type, and converts that to
the proportion of available forage consumed based on
the forage per acre.

The steps of the numerical simulation are as follows:

°ID3 classified cases into 10 qualitative consumption
categories representing the midpoints (5, 10, 15, ... , 95) of
10 equally sized qualitative ranges. 1D3’s error was mea-
sured by the difference between the midpoint of each pre-
dicted qualitative category and the expected quantitative
consumption value.

®This model, which simulates each grasshopper popula-
tion through the entire growth season, corresponds to the
knowledge used by CARMA minus critical period adjust-
ment. A simulation restricted to the critical period would
correspond to the full CARMA system’s knowledge.

1. Project each grasshopper population back to the be-
ginning of critical period.

2. Simulate the density and developmental phases for
each overwintering type through the end of the criti-
cal period based on the qualitative precipitation and
temperature given in the case.

3. Calculate the forage eaten per day per acre based
on the grasshopper density per acre and the forage
eaten per day per grasshopper for each overwintering
type and developmental phase as affected by temper-
ature.

4. Convert the total forage consumed to the proportion
of available forage consumed based on the forage per
acre.

The effect of temperature on consumption (as a re-
sult of changing metabolic rates) was represented by
multiplying a coefficient (determined from a lookup ta-
ble indexed by temperature) by the forage eaten per
day per grasshopper for each overwintering type. The
numerical simulation was trained by hill-climbing on
temperature-based coefficients to maximize the predic-
tive accuracy on the training cases.

The accuracy of each approach was tested using
leave-one-out testing for each of the 15 Expert Sets
and the Median Set. The results, which appear in Ta-
ble 2, include the root-mean-squared error for both the
specific Expert Sets and the Median Set for each of the
methods.

Discussion

The results of the empirical evaluation provide initial
confirmation for Hypothesis 1, that integrating model-
based and case-based reasoning through model-based
adaptation leads to more accurate forage consumption
predictions than the use of either technique individu-
ally. The average percentage root-mean-squared error
across the 15 Expert sets for CARMA-specific minus
critical period adjustment (18.0) is 17.4% lower than
for the nearest-neighbor approach (21.8) and 36.4%
lower than for the numerical simulation (28.3). The
error rates for the other empirical approaches on this
data set were higher than for nearest-neighbor and nu-
merical simulation: ID3 (29.6) and linear approxima-
tion (31.1). This initial confirmation is tentative be-
cause the low level of agreement among experts and ab-
sence of any external standard gives rise to uncertainty
about what constitutes a correct prediction. However,
this validation problem appears to be an inherent prop-
erty of the domain of rangeland pest management.
The results of the experiment also support Hypoth-
esis 2, that case-specific adaptation is more beneficial
in less linear datasets. Figure 1 shows the difference
in performance of each predictive method between the
Expert Sets and the Median Set. Linear approxima-
tion had a 29% lower error rate on the Median Set

(22.0 RMSE) than on the Expert Sets (31.1 RMSE).



Specific weights No featural adaptation Global weights
Full minus minus | minus featural minus FA, P, Full | minus
projection | CPA adaptation CPA (factored-NN) CPA
22.3 23.3 18.0 29.8 21.8 24.8 20.1

Table 1: CARMA’s average percentage root-mean-squared error across 15 expert sets with various adaptation

methods removed.

CARMA Empirical Only Model-Based Only
Specific Global | Factored- | ID3 | Linear Numerical
weights | weights NN appr. simulation
(=CPA) | (—CPA)
Expert sets 18.0 20.1 21.8 | 29.6 31.1 28.3
Median set 15.9 11.2 16.0 | 30.8 22.0 26.0

Table 2: Root-mean-squared error (in %) for leave-one-out-test results.

By contrast, learning methods without linearity bias—
the numerical simulation and ID3—did not vary signif-
icantly in performance. This suggests that the Median
Set is much more linear than the Expert Sets.

While case-specific adaptation weights produced
better performance than global weights for the Expert
Sets, the performance of specific weights on the Median
Set was indistinguishable from the nearest neighbor ap-
proach, whereas global weights exhibited a significant
improvement between the less linear Expert Sets to
the more linear Median set, indicating that the global
approach depends more on the linearity of the forage
consumption function.
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Figure 1: Percentage error rate improvement in Me-
dian Set over Expert Sets, (ExpertSetsErrorRate -
MedianSetErrorRate) / ExpertSetsErrorRate, for
various predictive methods.

On the Expert Sets, adaptation using global weights
produced a marginal average improvement (8%) over
nearest-neighbor prediction, which uses no adaptation.
By contrast, adaptation using case-specific weights
produced an average of 17% improvement in accuracy
over nearest-neighbor prediction. Figure 2 shows the
increase in accuracy of global and case-specific adapta-

tion over nearest-neighbor prediction for the 15 Expert
Sets.
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Figure 2: Percentage improvement of specific and
global featural adaptation weight methods over nearest
neighbor approach on the Expert Sets.

Conclusion

This paper has described model-based case adapta-
tion in CARMA, a system for rangeland pest man-
agement advising. CARMA’s predictions of rangeland
forage loss by grasshoppers were compared to predic-
tions by 15 expert entomologists using either global or
case-specific adaptation weights. Under both condi-
tions, CARMA’s predictions were more accurate than
CARMA’s case-based and model-based components
in isolation. However, CARMA’s, case-specific adap-
tation weights were consistently more accurate than
global adaptation weights. The experimental results
suggest that case-specific adaptation weights are more
appropriate in domains that are poorly approximated
by a linear function.
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Appendix: Describing the contribution

A. Reasoning framework: The reasoning frame-
work of CARMA’s forage loss module is an integra-
tion of case-based reasoning with model-based rea-
soning through model-based adaptation. Reuse and
adaptation of cases is beneficial for our application—
predicting the behavior of a biological system—
because, as our evaluation demonstrated, neither CBR
nor MBR are as accurate individually as in combi-
nation. Our particular adaptation techniques, such
as temporal projection, are extremely domain-specific.
However, the general approach of using simulation to
extend the coverage of cases may be widely applicable.
We use a variety of forms of knowledge:

1. Prototypical cases, represented as feature vectors,
expressing judgments of individual entomologists or
the median of multiple judgments.

2. A model of rangeland ecology, including grasshop-
per development phases, consumption, reproduc-
tion, and attrition, and rangeland climate and
growth patterns, obtained from an expert entomol-
ogist and from published reference materials.

3. Match weights obtained by calculation of mutual in-
formation gain between case features and qualitative
forage loss categories.

4. Adaptation weights induced using a hill-climbing al-
gorithm.

Prototypical cases are reused by adapting their forage
loss predictions. Model-based adaptation requires that
cases be represented using the same features as the
model of rangeland ecology.

B. Task: The task of CARMA’s forage loss module is
determining the proportion of forage that will be con-
sumed by grasshoppers under a given set of conditions.
This is an instance of the general task of predicting the
behavior of a physical system. The input to the forage
loss module is a case description, and the output is a
real-valued prediction between 0-100%.

C. Evaluation: Our hypotheses were: (1) an integra-
tion of model-based and case-based reasoning through
model-based adaptation leads to more accurate for-
age consumption predictions than the use of either
technique individually; and (2) the relative perfor-
mance of global and case-specific adaptation weights
in CARMA depends upon how closely the function
from case features to forage loss can be approximated
by a linear function. An empirical evaluation com-
pared CARMA’s ability to predict the forage consump-
tion judgments of 15 expert entomologists using either
global or case-specific adaptation weights to that of

CARMA’s case-based and model-based components in
isolation. The independent variables were case facts
(cases were distributed randomly through the biolog-
ically plausible regions of instance space) and sets of
expert judgments on those cases (the Expert Sets, con-
sisting of the judgments of the 15 experts, and the Me-
dian Set, representing the median of the expert pre-
dictions). The dependent variable was the difference
between the expert’s and CARMA’s prediction.

The primary contribution of this research is showing
that an integration of CBR and MBR through model-
based adaptation can increase predictive accuracy in
a domain in which neither technique is individually
sufficient.
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